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Our aim in this section is to consider classes of transformation semigroups
S≤ Tn, and investigate properties such as regularity. There is a permutation group
associated with S in one of two possible ways: either S contains permutations, in
which case S∩Sn is a permutation group; or the normaliser of S in the symmetric
group, the set

{g ∈ Sn : (∀s ∈ S)g−1sg ∈ S}

is a permutation group. In either case, as we will see, the group G influences the
structure of S.

Much as in the last chapter, we look first at semigroups of the form 〈G, f 〉,
where G≤ Sn and f ∈ Tn \Sn. If we could understand these semigroups, then we
could proceed to add two or more non-permutations.

1 The problem
The material here grew from a theorem of Araújo, Mitchell and Schneider.

Theorem 1.1 Let G be a permutation group on Ω, with |Ω| = n. Suppose that,
for any map f on Ω which is not a permutation, the semigroup 〈G, f 〉 is regular.
Then either G is the symmetric or alternating group on Ω, or one of the following
occurs:

(a) n = 5, G =C5, C5 oC2, or C5 oC4;

(b) n = 6, G = PSL(2,5) or PGL(2,5);

(c) n = 7, G = AGL(1,7);

(d) n = 8, G = PGL(2,7);

(e) n = 9, G = PGL(2,8) or PΓL(2,8).
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(Don’t worry too much about the groups in the list: the point is that, apart
from finitely many exceptions, G must be a symmetric or alternating group.)

In this section we explore some extensions of this result. Suppose that, instead
of asking that 〈G, f 〉 is regular for all choices of f , we require it only in some
special cases, for example, all maps f of some given rank k, or all maps f whose
image is a given k-element subset. The ultimate result would be a characterisation
of all pairs (G, f ) for which 〈G, f 〉 is regular (but we are some way from such a
result now).

2 Multiple transitivity and homogeneity
As we saw in the first lecture, the Classification of Finite Simple Groups (CFSG)
has the consequence that, for t ≥ 2, the finite t-transitive groups are all known
explicitly. The lists (other than symmetric and alternating groups) are finite for
t = 4,5 and infinite for t = 2,3.

Much earlier, Livingstone and Wagner had investigated the relationship be-
tween t-homogeneity and t-transitivity. (We remarked earlier that t-transitivity
implies t-homogeneity.) Note that a group of degree n is t-homogeneous if and
only if it is (n− t)-homogeneous; so, in considering these groups, we may as-
sume that t ≤ n/2. Now Livingstone and Wagner proved the following theorem
by elementary methods:

Theorem 2.1 Suppose that t ≤ n/2, and let G be t-homogeneous of degree n.
Then

(a) G is (t−1)-homogeneous;

(b) G is (t−1)-transitive;

(c) if t ≥ 5, then G is t-transitive.

Part (a), in particular, is short and elegant, using simple facts about the char-
acter theory of the symmetric group. The permutation character on (t − 1)-sets
is contained in the character on t-sets, from which it follows easily that a group
transitive on t-sets must be transitive on (t− 1)-sets. This character-theoretic ar-
gument can be translated into elementary combinatorics.

Subsequently, Kantor determined all the t-homogeneous but not t-transitive
groups for t = 2,3,4.
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3 The universal transversal property
Suppose that G is a permutation group, f a transformation, and f g1 f g2 f · · ·gr f =
f . Then, for each i, f gi f has the same rank as f . This implies that gi must map
the image of f to a section (transversal) for the kernel of f .

Which permutation groups G have the property that, for any map f of rank
k, the element f is regular in 〈G, f 〉? Since the kernel and image of such a map
f are an arbitrary k-partition and an arbitrary k-subset, we see that a necessary
condition is that G has the following k-universal transversal property:

For any k-set A and any k-partition P, there is an element g ∈ G such
that Ag is a transversal for P.

So the first question we have to consider is the classification of groups with the
k-universal transversal property (or k-ut property, for short).

It turns out that this property has much stronger consequences. The implica-
tion we saw above reverses, and more besides:

Theorem 3.1 Given k with 1 ≤ k ≤ n/2, the following conditions are equivalent
for a subgroup G of Sn:

(a) For any rank k map f , f is regular in 〈G, f 〉.
(b) For any rank k map f , 〈G, f 〉 is regular (this means that all its elements are

regular).

(c) For any rank k map f , f is regular in 〈g−1 f g : g ∈ G〉.
(d) For any rank k map f , 〈g−1 f g : g ∈ G〉 is regular.

(e) G has the k-universal transversal property.

The equivalence of (a) and (c) has been known for some time; but the equiva-
lence of these two conditions with (b) and (d) is a bit of a surprise. The semigroup
〈G, f 〉 usually contains elements with rank smaller than k; in order to show that
these are regular, we need to know that G has the l-universal transversal property,
for all l < k:

Theorem 3.2 For 2≤ k ≤ n/2, the k-ut property implies the (k−1)-ut property.
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This is reminiscent of the first part of the Livingstone–Wagner theorem. How-
ever, there seems to be no purely combinatorial proof that the k-ut property im-
plies the (k−1)-ut property for k≤ n/2. So we have to make a long detour, which
comes close to giving a complete classification of these groups for k > 2.

Which permutation groups have the k-ut property? In one case, the answer is
simple (but shows that there is no hope of a classification):

Proposition 3.3 A permutation group has the 2-ut property if and only if it is
primitive.

This is a nice characterisation of primitivity; it depends on facts about the
orbital graph which I will prove in the final lecture.

For larger values of k, we begin to get some hold on the group. Let us say
that, if l ≤ k, a permutation group G is (l,k)-homogeneous if, for any l-set A and
k-set B, there exists g ∈ G with Ag ⊆ B. If l = k, this is just k-homogeneity as
previously defined.

Now observe that

If G has the k-ut, then G is (k−1,k)-homogeneous.

For, given A and B as in the definition, take the k-partition P which has the
elements of A as singleton parts and one part including everything else; then a
k-set is a transversal for P if and only it contains A. So, if G has k-ut, there exists
B such that Bg⊇ A; now the inverse of g satisfies Ag−1 ⊆ B.

Also, there is a close connection between (k− 1,k)-homogeneity and (k−
1)-homogeneity. Certainly the second of these properties implies the first. In
addition, we have

There is a function f such that, if G is (k− 1,k)-homogeneous of
degree n≥ f (k), then G is (k−1)-homogeneous.

For this, we take f (k) to be the Ramsey number Rk−1(k,k). Suppose that
n ≥ Rk−1(k,k) and G is not (k− 1)-homogeneous; colour the (k− 1)-sets in one
orbit red, and the remaining ones blue. The inequality on n implies that there is a
monochromatic k-set; if it is red, then no blue (k−1)-set can be mapped inside it
by G, and vice versa.

Now the analysis involves showing that, with just five exceptions (with degrees
5, 7 and 9), a (k−1,k) homogeneous group of degree n, with k ≤ n/2, is (k−1)-
homogeneous. The proof involves showing, by mostly combinatorial arguments,
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that such a group must be 2-transitive, and then invoking the classification of the
2-transitive groups (a consequence of CFSG). Now Theorem 3.2 follows from
this, since a (k−1)-homogeneous group obviously has the (k−1)-ut property.

The permutation groups which are (k− 1,k)-homogeneous, and those with
the k-universal transversal property, have been almost completely classified; a
few stubborn families of groups (including the Suzuki groups for k = 3) are still
holding out.

4 The existential transversal property
In this section we look at a more general problem. Instead of requiring regularity
of 〈G, f 〉 for all f of rank k, we only ask it for those maps with a given image.

Given k with 1≤ k≤ n/2, for which permutation groups G of degree n
and k-subsets A of Ω is it the case that, for all maps f with Im( f ) = A,
the element f is regular in 〈G, f 〉?

For this problem, where we fix the image rather than asking about all maps
with image of size k, a weaker property than the k-ut is required. We say that G
has the k-existential transversal property, or k-et property for short, if there exists
a k-subset A such that, for any k-partition P, there is an element g ∈ G such that
Ag is a transversal for P. We call A a witnessing st for the k-et property.

Work has begun on groups with the k-et property. It is hampered by the fact
that k-et does not imply (k− 1)-et for 1 < k ≤ n/2: there are two 3-transitive
groups of degree 16 which satisfy 4-et and 6-et but not 5-et. Also, the connection
with homogeneity is not so straightforward. For example, the Mathieu group M24
(which is 5-transitive but not more) has the 7-et property.

Another issue is that the k-et property does not imply transitivity. Fortu-
nately, however, it is possible to determine completely the intransitive groups
with the property for 2 < k < n: such a group must fix a point and act (k− 1)-
homogeneously on the remaining points. So we may assume that our group G is
transitive.

However, using CFSG and quite a bit of effort, it has been possible to show:

Theorem 4.1 Suppose that 8 ≤ k ≤ n/2. Then a transitive permutation group of
degree n with the k-et property is the symmetric or alternating group.
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The example M24 shows that 8 is best possible in this theorem; but probably
M24 is the only further example for the 7-et property.

Here is a short account of the proof, giving the main techniques used.
Suppose that G has the k-et property and let A be a witnessing set. First note

that A contains a representative of every G-orbit on (k− 1)-sets. For, if B is a
(k− 1)-set, let P be the partition which has the singletons of B as parts and a
single part containing everything else. Then A can be mapped to a transversal for
P, that is, a k-set containing B.

In particular, this means that G has at most k-orbits on (k−1)-sets, and so

|G| ≥
(

n
k−1

)/
k.

We call this the order bound, and return to it shortly. We note that the right-hand
side of the order bound gets stronger as k increases (for k ≤ n/2); so, if G fails
the bound for some k, then it fails for all larger k. Indeed, this bound has been
improved by essentially a factor of 2 by Wolfram Bentz very recently.

The other main technique is that, if G is a group of automorphisms of some
combinatorial structure, we can often find two (k− 1)-subsets of that structure
which cannot “coexist” inside a k-set, which would contradict the above property
of the witnessing k-set. For example, suppose that k = 4, and that G is imprimitive,
with at least three blocks each of size at least 3. Then a 3-subset of a block and a 3-
set containing a point from each of three distinct blocks cannot coexist. Pursuing
this argument a little further, we conclude that, for k ≥ 4, G must be primitive.

The argument above gives us a lower bound for the order of G. There are also
upper bounds for orders of primitive groups – the best of these is derived from
CFSG. Combinatorial arguments also have their place here.

For example, suppose that G is one of the “large” primitive groups, Sm or Am,
in its action on 2-sets. As we saw in the preceding chapter, G preserves a graph
(the line graph of Km) which contains a clique of size m−1 and an independent set
of size bm/2c, which cannot coexist inside a set of size less than m−2+ bm/2c;
so k must be at least this value. Now it is easy to see that there are more than k
orbits on (k−1)-sets (these orbits correspond to graphs with k−1 edges).
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