Permutation Groups and Transformation Semigroups
Lecture 4: Regularity

Peter J. Cameron
Permutation Groups summer school, Marienheide
18-22 September 2017

Our aim in this section is to consider classes of transformation semigroups
S < T,, and investigate properties such as regularity. There is a permutation group
associated with S in one of two possible ways: either S contains permutations, in
which case §N S, is a permutation group; or the normaliser of S in the symmetric
group, the set
{g€S,: (VscS)g 'sge s}

is a permutation group. In either case, as we will see, the group G influences the
structure of S.

Much as in the last chapter, we look first at semigroups of the form (G, f),
where G < §,, and f € T, \ S,,. If we could understand these semigroups, then we
could proceed to add two or more non-permutations.

1 The problem
The material here grew from a theorem of Araujo, Mitchell and Schneider.

Theorem 1.1 Let G be a permutation group on Q, with |Q| = n. Suppose that,
for any map f on Q which is not a permutation, the semigroup (G, f) is regular.
Then either G is the symmetric or alternating group on Q, or one of the following
occurs:

(a) n=5G= C5, C5 X (, orC5 X Cy,

(b) n=6, G=PSL(2,5) or PGL(2,5);

(c) n=1,G=AGL(1,7);

(d) n=38, G=PGL(2,7);

(e) n=9, G=PGL(2,8) or PT'L(2,8).



(Don’t worry too much about the groups in the list: the point is that, apart
from finitely many exceptions, G must be a symmetric or alternating group.)

In this section we explore some extensions of this result. Suppose that, instead
of asking that (G, f) is regular for all choices of f, we require it only in some
special cases, for example, all maps f of some given rank k, or all maps f whose
image is a given k-element subset. The ultimate result would be a characterisation
of all pairs (G, f) for which (G, f) is regular (but we are some way from such a
result now).

2 Multiple transitivity and homogeneity

As we saw in the first lecture, the Classification of Finite Simple Groups (CFSG)
has the consequence that, for + > 2, the finite z-transitive groups are all known
explicitly. The lists (other than symmetric and alternating groups) are finite for
t = 4,5 and infinite forr = 2, 3.

Much earlier, Livingstone and Wagner had investigated the relationship be-
tween r-homogeneity and #-transitivity. (We remarked earlier that z-transitivity
implies 7-homogeneity.) Note that a group of degree n is -homogeneous if and
only if it is (n —t)-homogeneous; so, in considering these groups, we may as-
sume that < n/2. Now Livingstone and Wagner proved the following theorem
by elementary methods:

Theorem 2.1 Suppose that t < n/2, and let G be t-homogeneous of degree n.
Then

(a) Gis (t — 1)-homogeneous;
(b) G is (t — 1)-transitive;
(c) ift > 5, then G is t-transitive.

Part (a), in particular, is short and elegant, using simple facts about the char-
acter theory of the symmetric group. The permutation character on (r — 1)-sets
is contained in the character on ¢-sets, from which it follows easily that a group
transitive on 7-sets must be transitive on (¢ — 1)-sets. This character-theoretic ar-
gument can be translated into elementary combinatorics.

Subsequently, Kantor determined all the -homogeneous but not z-transitive
groups fort = 2,3,4.



3 The universal transversal property

Suppose that G is a permutation group, f a transformation, and fgifg>f---g-f =
f- Then, for each i, fg;f has the same rank as f. This implies that g; must map
the image of f to a section (transversal) for the kernel of f.

Which permutation groups G have the property that, for any map f of rank
k, the element f is regular in (G, f)? Since the kernel and image of such a map
f are an arbitrary k-partition and an arbitrary k-subset, we see that a necessary
condition is that G has the following k-universal transversal property:

For any k-set A and any k-partition P, there is an element g € G such
that Ag is a transversal for P.

So the first question we have to consider is the classification of groups with the
k-universal transversal property (or k-ut property, for short).

It turns out that this property has much stronger consequences. The implica-
tion we saw above reverses, and more besides:

Theorem 3.1 Given k with 1 < k < n/2, the following conditions are equivalent
for a subgroup G of Sy:
(a) For any rank k map f, f is regular in (G, f).

(b) For any rank k map f, (G, f) is regular (this means that all its elements are
regular).

(c) For any rank k map f, f is regular in (g~ fg: g € G).
(d) For any rank k map f, (g~ ' fg: g € G) is regular.

(e) G has the k-universal transversal property.

The equivalence of (a) and (c) has been known for some time; but the equiva-
lence of these two conditions with (b) and (d) is a bit of a surprise. The semigroup
(G, f) usually contains elements with rank smaller than k; in order to show that
these are regular, we need to know that G has the /-universal transversal property,
forall I < k:

Theorem 3.2 For 2 < k < n/2, the k-ut property implies the (k — 1)-ut property.



This is reminiscent of the first part of the Livingstone—Wagner theorem. How-
ever, there seems to be no purely combinatorial proof that the k-ut property im-
plies the (k— 1)-ut property for k < n/2. So we have to make a long detour, which
comes close to giving a complete classification of these groups for k > 2.

Which permutation groups have the k-ut property? In one case, the answer is
simple (but shows that there is no hope of a classification):

Proposition 3.3 A permutation group has the 2-ut property if and only if it is
primitive.

This is a nice characterisation of primitivity; it depends on facts about the
orbital graph which I will prove in the final lecture.

For larger values of k, we begin to get some hold on the group. Let us say
that, if / < k, a permutation group G is (/,k)-homogeneous if, for any [-set A and
k-set B, there exists g € G with Ag C B. If [ = k, this is just k-homogeneity as
previously defined.

Now observe that

If G has the k-ut, then G is (k — 1,k)-homogeneous.

For, given A and B as in the definition, take the k-partition P which has the
elements of A as singleton parts and one part including everything else; then a
k-set is a transversal for P if and only it contains A. So, if G has k-ut, there exists
B such that Bg O A; now the inverse of g satisfies Ag_l C B.

Also, there is a close connection between (k — 1,k)-homogeneity and (k —
1)-homogeneity. Certainly the second of these properties implies the first. In
addition, we have

There is a function f such that, if G is (k — 1,k)-homogeneous of
degree n > f(k), then G is (k — 1)-homogeneous.

For this, we take f(k) to be the Ramsey number R;_(k,k). Suppose that
n > Ry_1(k,k) and G is not (k — 1)-homogeneous; colour the (k — 1)-sets in one
orbit red, and the remaining ones blue. The inequality on n implies that there is a
monochromatic k-set; if it is red, then no blue (k — 1)-set can be mapped inside it
by G, and vice versa.

Now the analysis involves showing that, with just five exceptions (with degrees
5,7 and 9), a (k— 1,k) homogeneous group of degree n, with k <n/2,is (k—1)-
homogeneous. The proof involves showing, by mostly combinatorial arguments,



that such a group must be 2-transitive, and then invoking the classification of the
2-transitive groups (a consequence of CFSG). Now Theorem 3.2 follows from
this, since a (k — 1)-homogeneous group obviously has the (k — 1)-ut property.

The permutation groups which are (k — 1,k)-homogeneous, and those with
the k-universal transversal property, have been almost completely classified; a
few stubborn families of groups (including the Suzuki groups for k = 3) are still
holding out.

4 The existential transversal property

In this section we look at a more general problem. Instead of requiring regularity
of (G, f) for all f of rank k, we only ask it for those maps with a given image.

Given k with 1 <k <n/2, for which permutation groups G of degree n
and k-subsets A of Q is it the case that, for all maps f with Im(f) =A,
the element f is regular in (G, f)?

For this problem, where we fix the image rather than asking about all maps
with image of size k, a weaker property than the k-ut is required. We say that G
has the k-existential transversal property, or k-et property for short, if there exists
a k-subset A such that, for any k-partition P, there is an element g € G such that
Ag is a transversal for P. We call A a witnessing st for the k-et property.

Work has begun on groups with the k-et property. It is hampered by the fact
that k-et does not imply (k — 1)-et for 1 < k < n/2: there are two 3-transitive
groups of degree 16 which satisfy 4-et and 6-et but not 5-et. Also, the connection
with homogeneity is not so straightforward. For example, the Mathieu group Mp4
(which is 5-transitive but not more) has the 7-et property.

Another issue is that the k-et property does not imply transitivity. Fortu-
nately, however, it is possible to determine completely the intransitive groups
with the property for 2 < k < n: such a group must fix a point and act (k— 1)-
homogeneously on the remaining points. So we may assume that our group G is
transitive.

However, using CFSG and quite a bit of effort, it has been possible to show:

Theorem 4.1 Suppose that 8 < k < n/2. Then a transitive permutation group of
degree n with the k-et property is the symmetric or alternating group.



The example M4 shows that 8 is best possible in this theorem; but probably
M>4 is the only further example for the 7-et property.

Here is a short account of the proof, giving the main techniques used.

Suppose that G has the k-et property and let A be a witnessing set. First note
that A contains a representative of every G-orbit on (k — 1)-sets. For, if B is a
(k— 1)-set, let P be the partition which has the singletons of B as parts and a
single part containing everything else. Then A can be mapped to a transversal for
P, that is, a k-set containing B.

In particular, this means that G has at most k-orbits on (k — 1)-sets, and so

G| > (kfl)/k.

We call this the order bound, and return to it shortly. We note that the right-hand
side of the order bound gets stronger as k increases (for k < n/2); so, if G fails
the bound for some k, then it fails for all larger k. Indeed, this bound has been
improved by essentially a factor of 2 by Wolfram Bentz very recently.

The other main technique is that, if G is a group of automorphisms of some
combinatorial structure, we can often find two (k — 1)-subsets of that structure
which cannot “coexist” inside a k-set, which would contradict the above property
of the witnessing k-set. For example, suppose that k =4, and that G is imprimitive,
with at least three blocks each of size at least 3. Then a 3-subset of a block and a 3-
set containing a point from each of three distinct blocks cannot coexist. Pursuing
this argument a little further, we conclude that, for kK > 4, G must be primitive.

The argument above gives us a lower bound for the order of G. There are also
upper bounds for orders of primitive groups — the best of these is derived from
CFSG. Combinatorial arguments also have their place here.

For example, suppose that G is one of the “large” primitive groups, S;, or A,,,
in its action on 2-sets. As we saw in the preceding chapter, G preserves a graph
(the line graph of Kj,;) which contains a clique of size m — 1 and an independent set
of size |[m/2], which cannot coexist inside a set of size less than m — 2+ [m/2];
so k must be at least this value. Now it is easy to see that there are more than k
orbits on (k — 1)-sets (these orbits correspond to graphs with £ — 1 edges).



