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In the final lecture, I will consider when the semigroup generated by a permu-
tation group and one additional map of given rank k is idempotent-generated. I
will concentrate on the case k = 2, which gives rise to a challenging problem, the
Road closure conjecture.

I will also say a little about some related problems.

1 Orbital graphs
Other lecturers have talked about orbital graphs; I will summarise here enough for
my needs. I will consider only undirected graphs, although a richer theory (that
of coherent configurations) is obtained if directed graphs are used.

Let G be a permutation group on Ω. For convenience, I assume that G is tran-
sitive. As we have seen, G has an induced action on the set of 2-element subsets
of Ω. This set falls into a number of orbits for this action, say O1,O2, . . . ,Os.

Now for each subset I of {1,2, . . . ,s}, there is a graph with vertex set Ω and
edge set

⋃
i∈I Oi. Since the orbits are preserved by G, this graph is invariant under

G, and the action of G on this graph is vertex-transitive. Moreover, every G-
invariant graph arises in this way. In the case where |I|= 1, say I = {i}, we obtain
a graph Γi on which G acts, transitively on the vertices and on the edges. The
graphs Γi are the (undirected) orbital graphs for G.

Now Donald Higman showed:

Theorem 1.1 G is primitive if and only if all the orbital graphs are connected.

For, if G is imprimitive, suppose that two vertices x,y are related by a non-
trivial G-invariant equivalence relation. If Oi is the orbit containing {x,y}, then
the orbital graph Γi has the property that any edge is contained in an equivalence
class of the relation, and so this graph is disconnected. Conversely, if there is
a disconnected orbital graph, then its connected components are the classes of a
non-trivial G-invariant equivalence relation.
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From this, our earlier result that the 2-ut property is equivalent to primitivity
follows. For 2-ut asserts that, for any 2-set {x,y} and any 2-partition, there is an
image of {x,y} which is a transversal to the partition; so the corresponding orbital
graph has an edge transversal to any 2-partition, and must be connected.

2 Idempotents and idempotent generation
Theorem 2.1 For a permutation group G on Ω, and positive integer k with 2 ≤
k ≤ n/2, the following are equivalent:

(a) for any map f of rank k, 〈G, f 〉 contains an idempotent of rank k;

(b) G has the k-ut property.

Proof Suppose that G has the k-ut property, and that f has rank k, image A, and
kernel P. Then, there exists g such that the image of f g is a transversal for its
kernel P. As we remarked in the second lecture, this guarantees that some power
of f g is an idempotent.

Conversely, let A be a k-set and P a k-partition. Choose a map f with kernel P
and image A. By assumption, 〈G, f 〉 contains an idempotent e of rank k; without
loss, e = f g1 f g2 · · · f gr. (If the expression for e begins with an element of g,
conjugate by this element to move it to the end.) Now the rank of f g1 is equal to
k, and so Ag1 is a transversal to P, as required.

However, for 〈G, f 〉 \G to be idempotent-generated for all rank k maps f is a
stronger condition. First note that the condition is empty for k = 1, since every
rank 1 map is an idempotent; so k = 2 is the first non-trivial case.

In general, a combinatorial equivalent to idempotent generation is not known.
(There is a condition, the strong k-ut property, which implies idempotent-generation,
but is not equivalent to it.) There is such a condition in the case k = 2, leading to
an interesting open problem in permutation groups. Recall first that the 2-ut prop-
erty is equivalent to primitivity, so whatever our condition is, it must be stronger
than primitivity.

Let G be a primitive permutation group on Ω. As we saw earlier, any orbital
graph for G is connected. Our stronger condition is as follows.

We say that G has the road closure property if the following holds: for any
orbit O of G on 2-sets, and any proper block of imprimitivity (smaller than O) for
the action of G on O, the graph with vertex set Ω and edge set O\B (obtained by
deleting the edges in B from the orbital graph) is connected.
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Imagine that the graph represents a connected road network; we ask that, if
workmen come along and dig up a proper block of imprimitivity for G, the graph
remains connected.

An example of a primitive group which fails to have the road closure property
is the automorphism group of the square grid graph (the line graph of Km,m: this is
primitive for m> 3 (but of course not basic, since the grid is a Cartesian structure).
See Figure 1.
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Figure 1: A grid

The automorphism group is transitive on the edges of this graph, and has two
blocks of imprimitivity, the horizontal and vertical edges (coloured red and blue in
the figure). If it is a road network, and if all the blue edges are closed, the network
is disconnected: it is no longer possible to travel between different horizontal
layers.

Using similar arguments it is possible to show that a primitive group which
has the road closure property must be basic.

Here is an example of a basic primitive group which does have the road closure
property. The group is G = S5 acting on 2-sets; one orbital graph for it is the
Petersen graph (Figure 2). Now the group G acts transitively on the 15 edges,
which fall into five groups of three mutually parallel or perpendicular edges in
the standard drawing of the graph, as shown in the figure; these triples are the
maximal blocks of imprimitivity. It is clear that, when the three edges shown in
red are removed, the graph remains connected.

And here is a basic group which fails the road closure property. We take G to
be the group of automorphisms and dualities (maps which interchange points and
lines but preserve incidence) of the Fano plane (Figure 3). G acts on the flags of
the Fano plane; the action is primitive. We consider the orbital graph in which two
flags are joined if they share a point or a line. The edges fall into two types which
are blocks of imprimitivity, depending on whether the two flags share a point or
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Figure 2: The Petersen graph

a line. If we remove the edges joining flags sharing a point, then from a given
flag we can only move to the other two flags using the same line; so the graph is
disconnected.
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Figure 3: The Fano plane

The connection with our problem is:

Theorem 2.2 Let G be a primitive permutation group on Ω. Then the following
are equivalent:

(a) G has the road closure property.

(b) For any rank 2 map f , 〈G, f 〉 \G is idempotent-generated.

The basic primitive groups which are known to fail the road closure property
are rather few, and fall into two classes:

• groups which have an imprimitive normal subgroup of index 2 (the group
associated with the Fano plane above is an example);
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• a class of groups associated with the triality automorphism of the eight-
dimensional orthogonal groups.

It is conjectured that this list is complete. This is the Road closure conjecture.

3 Partition transitivity and homogeneity
To conclude, here, more briefly, are a couple of related topics which are close to
the ones already treated.

Let f be a map of rank k on Ω, where |Ω|= n, and G a permutation group on
Ω, and consider the semigroup S = 〈G, f 〉 \G. An element of S of the form

s = f g1 f g2 f · · · f gr f

has the property that Ker(s) is a coarsening of Ker( f ) (that is, any part of the latter
is contained in a part of the former), while Im(s) is a subset of Im( f ). Pre- and
post-multiplying by elements of G, we see that the kernel of any element of S is
a G-image of a coarsening of Ker( f ), while the image of any element of S is a
G-image of a subset of Im( f ).

If G = Sn, then clearly the elements of maxumum rank k in S are all those
whose kernels have the same shape as Ker( f ), and whose images have the same
cardinality as Im( f ).

Consider the question: Which permutation groups G have the property that

〈G, f 〉 \G = 〈Sn, f 〉 \Sn.

Can we classify these groups? We see that this is equivalent to determining groups
which are k-homogeneous and λ -homogeneous, where λ is a partition of n with
k parts: here, we say that a permutation group G is λ -homogeneous if it acts
transitively on partitions of Ω of shape λ .

Note that a similar concept, λ -transitive, related to λ -homogeneous much as
k-transitive is to k-homogeneous, was introduced by Martin and Sagan.

The λ -homogeneous permutation groups have been classified, and the prob-
lem posed above was solved. The λ -homogeneous groups were independently
classified by Dobson and Malnič.

A related question concerns groups G for which

〈G, f 〉 \G = 〈g−1 f g : g ∈ G〉.
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Groups for which this property holds for all non-permutations f are called nor-
malizing groups. They have been determined: only the symmetric and alternating
groups, the trivial group, and finitely many others have this property. The next
question in this direction would be to determine the k-normalizing groups, those
for which the above two semigroups are equal for all maps of rank k.

4 Automorphisms
Perhaps the single most surprising fact about finite groups is the following.

Theorem 4.1 The only symmetric group (finite or infinite) which admits an outer
automorphism is S6.

An outer automorphism of a group is an automorphism not induced by conju-
gation by a group element. In the case of symmetric groups, the group elements
are all the permutations, and so an outer automorphism is one which is not induced
by a permutation.

The outer automorphism of S6 was known in essence to Sylvester; it arguably
lies at the root of constructions taking us to the Mathieu groups M12 and M24,
the Conway group Co1, the Fischer–Griess Monster, and the infinite-dimensional
Monster Lie algebra. Here is a sketch of Sylvester’s construction (in his own
idiosyncratic terminology).

Begin with A = {1, . . . ,6}, so |A| = 6. A duad is a 2-element subset of A; so
there are 15 duads. A syntheme is a set of three duads covering all the elements
of A; there are also 15 synthemes. Finally, a total (or synthematic total) is a set of
five synthemes covering all 15 duads. It can be shown that there are 6 totals. Let
B be the set of totals.

Then any permutation on A induces permutations on the duads and on the
synthemes, and hence on B; this gives a map from the symmetric group on A to
the symmetric group on B which is an outer automorphism of S6.

This outer automorphism has order 2 modulo inner automorphisms. For any
syntheme lies in two totals, so we can identify synthemes with duads of totals;
any duad lies in three synthemes covering all the totals, so we can identify duads
with synthemes of totals; and finally, each element of A lies in 5 duads whose
corresponding synthemes of totals form a total of totals!

There are other examples of this phenomenon too. For example, in the second
stage of the above process, the Mathieu group M12 has an outer automorphism
which is not induced by a permutation.
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Does anything similar happen for transformation semigroups?
Sullivan proved the following theorem 40 years ago:

Theorem 4.2 A finite transformation semigroup S containing all the rank 1 maps
has the property that all its automorphisms are induced by permutations.

We observe that the rank 1 maps are the minimal idempotents (and so are
mapped among themselves by any automorphism), and are naturally in one-to-
one correspondence with the points on which the semigroup acts. So what is
required is just a proof that only the identity automorphism can fix all the rank 1
maps.

As a corollary, we see:

Corollary 4.3 Let S be a transformation semigroup which is not a permutation
group, whose group of units is a synchronizing permutation group. Then Aut(S)
is contained in the symmetric group; that is, all automorphisms of S are induced
by conjugation in its normaliser in the symmetric group.

For, since S contains a synchronizing group G, it contains at least one element
of rank 1; and since G is transitive, it contains them all.

And there matters stayed for a long time! But it is tempting to wonder whether
we can replace “synchronizing” by “primitive” here.

Recently a small step has been taken. Recall that, if G is not synchronizing,
then the smallest possible rank of an element in a non-synchronizing monoid with
G as its group of units is 3.

Theorem 4.4 Let S be a transformation semigroup containing an element of rank
at most 3, and whose group of units is a primitive permutation group. Then the
above conclusion holds: all automorphisms of S are induced by conjugation in its
normaliser in the symmetric group.

For this, it is necessary to reconstruct the points of Ω from the images and
kernels of maps of rank 3 in a way which is invariant under automorphisms of
S. This is achieved by counting endomorphisms with various properties. For
example, consider the images, which are maximal cliques in a graph Γ with S ≤
End(Γ). It is not hard to show that no two such cliques can intersect in two points;
we distinguish pairs of cliques intersecting in a point from disjoint pairs of cliques
by properties of the idempotents. We refer to the paper for more details.
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