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Selections

Students often meet the following table in elementary
probability or combinatorics courses. In how many ways can I
choose n objects from a set of k objects?

Order Order
significant not significant

With replacement kn
(

k + n− 1
n

)
Without replacement k(k− 1) · · · (k− n + 1)

(
k
n

)



Symmetry and structure

The first entry kn is in a sense the most basic.
The rows and the columns reflect two important themes of
combinatorial enumeration, namely symmetry and structure.
In the first column, we count selections as they are drawn; in
the second, we count up to symmetry (where ‘symmetry’
means arbitrary rearrangement of the order of the draws).
In the first row, we count all selections; in the second, we place
a structural restriction on the allowed selections, namely, the
elements drawn must all be distinct.
In order to generalise, we note that we are counting functions
from an n-set to a k-set. In the second row we count injective
functions, while in the second column we count up to the
action of the symmetric group Sn.



Chromatic polynomial

We begin by generalising the structural restriction.

Let Γ be a graph on n vertices. A proper k-colouring of Γ with a
set C of k colours is a function from the vertex set VΓ to the set
of colours, with the property that adjacent vertices receive
different colours.
The chromatic polynomial PΓ(x) of the graph Γ has the
property that, for positive integers k, PΓ(k) is the number of
proper k-colourings of Γ.
Thus, if Γ is the null graph (with no edges), any function is a
colouring, and PΓ(x) = xn; if Γ is the complete graph (with an
edge between each pair of vertices), then the proper colourings
are just the injective functions, and

PΓ(x) = x(x− 1) · · · (x− n + 1).



Chromatic number, chromatic roots

The chromatic number of a graph Γ is the smallest positive
integer k for which Γ has a proper colouring with k colours.

A positive integer k is a root of PΓ(x) if and only if k is smaller
than the chromatic number of Γ.

A chromatic root is a root of a chromatic polynomial.

I There are no chromatic roots in the intervals (−∞, 0),
(0, 1), or (1, 32

27 ] (Jackson)
I Real chromatic roots are dense in [ 32

27 , ∞) (Thomassen)
I Complex chromatic roots are dense in C (Sokal)



Orbit-counting Lemma

Next we turn to symmetry.

Let G be a group of automorphisms of a graph Γ. We want to
count G-orbits on the set of proper colourings of Γ. The key tool
is the Orbit-counting Lemma:

Theorem
Let G act on a set X. Then the number of orbits of G on X is equal to
the average number of fixed points on X of the elements of G:

# Orbits(G, X) =
1
|G| ∑

g∈G
fixX(g).

Said otherwise, the number of orbits is the expected number of
fixed points of a random element of G.



Orbital chromatic polynomial

Let g be an automorphism of a graph Γ. Denote by Γ/g the
graph obtained by shrinking every cycle of g to a single vertex.
The number of k-colourings of Γ fixed by g is equal to the
number of colourings of Γ/g. For a colouring is fixed by g if
and only if it is constant on the cycles of g (and so induces a
proper colouring of Γ/g).

So, if G is a group of automorphisms of Γ, define the orbital
chromatic polynomial of Γ and G to be

OPΓ,G(x) =
1
|G| ∑

g∈G
PΓ/g(x).

Then for positive integers k, the number of orbits of G on the
k-colourings of Γ is OPΓ,G(k).



An example
I will illustrate with the Petersen graph:
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For the Petersen graph, the chromatic polynomial is

PΓ(q) = q(q− 1)(q− 2)×
(q7 − 12q6 + 67q5 − 230q4 + 529q3 − 814q2 + 775q− 352).

We see that the least number of colors required for a proper
coloring (the smallest q for which this is non-zero) is 3, and the
number of proper colorings for q up to 10 is given in the
following table:

q 3 4 5 6 7 8 9 10
PΓ(q) 120 12960 332880 3868080 27767880 144278400 594347040 2055598560



In order to calculate the orbital chromatic polynomial of the
Petersen graph, we need to understand its automorphisms.
(We take G to be the full automorphism group.)
A convenient representation of the Petersen graph is as follows.
The vertices can be labelled with the 2-element subsets of
{1, 2, 3, 4, 5}; two vertices are joined if and only if their labels
are disjoint. It is clear from this description that the symmetric
group S5 acts on the graph, and in fact this is the full
automorphism group.



Now the only automorphisms whose cycles contain no edges
are the identity, 2-cycles, and 3-cycles on {1, 2, 3, 4, 5}. (For
example, the cycle (12, 23, 34, 45, 15) of the permutation
(1, 2, 3, 4, 5) contains an edge from 12 to 34.) There are 10
2-cycles and 20 3-cycles, and the corresponding graphs Γ/g are
shown:
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Now doing the calculation, we find that the orbital chromatic
polynomial is

OPΓ,G(q) = q(q− 1)(q− 2)×
(q7 − 12q6 + 67q5 − 220q4 + 469q3 − 664q2 + 595q− 252)/120.

The values for 3 to 10 colors are

q 3 4 5 6 7 8 9 10
OPΓ,G(q) 6 208 3624 36654 248234 1254120 5089392 17449788



A variation

In how many ways can we colour a graph if the order of the
colours is not significant? This asks us to count partitions into
independent sets.
We can’t just divide the chromatic polynomial by q!. [WHY??]
First, we count colourings in which every colour actually
appears. This is straightforward using inclusion-exclusion: we
obtain

P∗Γ(q) = ∑
r≤q

(−1)q−r
(

q
r

)
PΓ(r).

(Note that this is not a polynomial, since it is zero if q > n.)
Dividing this number by q!, we obtain the number of partitions
into q independent sets.
For the Petersen graph, the numbers are

q 3 4 5 6 7 8 9 10
P∗Γ(q)/q! 20 520 2244 2865 1435 315 30 1



Combining?

What if we don’t care about the names of the colors, and also
want to count up to symmetry?
The first step of what we did works fine: PIE gives us a formula
for the number of orbits on q-colorings in which all the colors
are used. The numbers for the Petersen graph are

q 3 4 5 6 7 8 9 10
OP∗Γ,G(q) 6 184 2644 17910 60690 105840 90720 30240

But we cannot simply divide these numbers by q! to get the
number of orbits on partitions. This is because it is possible that
a permutation of the parts of a partition can be realised by
applying a symmetry, so we would be undercounting. Indeed,
the numbers in the table are not all divisible by q!.



I don’t know a mechanical method of finding the number of
orbits of G on partitions of Γ into q independent sets. This
would be an interesting research problem. In the case of the
Petersen graph, the six orbits with q = 3 are indeed all the same
if permutations of the colors are allowed, so the first entry in
the corresponding table is 1.
Computationally, the result is:

q 3 4 5 6 7 8 9 10
P∗Γ,G(q) 1 10 30 36 20 7 1 1

Notice how much smaller the numbers are!



Reciprocity theorems
I’d like to take a small detour to discuss some recent work with
Jason Semeraro.
Think back to the formulae for the numbers of unordered
selections of k things from n:

Without repetition:
(

n
k

)
; With repetition:

(
n + k− 1

k

)
.

Both formulae are polynomials of degree k in n, and we have(
n + k− 1

k

)
= (−1)k

(
−n
k

)
.

This is a simple example of what Richard Stanley called a
reciprocal pair of polynomials, two combinatorially-defined
polynomials f and g of the same degree k, which (slightly
unexpectedly) satisfy the relation

g(q) = (−1)kf (−q).



The cycle polynomial of a permutation group

Let G be a permutation group of degree n. The cycle
polynomial of G is the polynomial

FG(x) =
1
|G| ∑

g∈G
xc(g),

where c(g) is the number of cycles of the permutation g
(including fixed points). It is a polynomial of degree n, with
leading coefficient 1/|G|.

Proposition

For a positive integer q, FG(q) is the number of G-orbits on
colourings of {1, . . . , n} with q colours.
This follows immediately from the Orbit-Counting Lemma,
since a colouring is fixed by g if and only if it is constant on
every cycle of g.



An example

It follows from the preceding Proposition that

FSn(x) =
(

x + n− 1
n

)
.

We recognise the right-hand side as the reciprocal polynomial

of
(

x
n

)
, which happens to be the orbital chromatic polynomial

of Sn acting on the complete graph Kn (since in a proper
colouring, all the colours are forced to be different).
Jason and I found many instances of the scenario described in
the following question.

Question
For which permutation groups G does there exist a graph Γ such that
FG(x) and OPΓ,G(x) are reciprocal polynomials?



The cycle index
The cycle index of a permutation group G of degree n is the
polynomial in indeterminates s1, . . . , sn given by

Z(G; s1, . . . , sn) =
1
|G| ∑

g∈G

n

∏
i=1

sci(g)
i ,

where ci(g) is the number of cycles of length i in the
permutation g.
Its role in many combinatorial counting problems involving
enumeration under group action is well-known.
The cycle polynomial we met earlier is a simple specialisation:

FG(x) = Z(G; x, x, . . . , x).

Other specialisations have been studied: among these are the
fixed point polynomial, the generating function for the
numbers of fixed points of group elements, is Z(G; x, 1, . . . , 1);
and the Parker vector, used in computing Galois groups.



A problem

We saw that the cycle polynomial sometimes has a reciprocal
polynomial, which is the orbital chromatic polynomial of a
G-invariant graph.
Richard Stanley has suggested that there might be a reciprocal
of the cycle index. I am not sure how this would work.
If it were so, then other specialisations such as the fixed point
polynomial would presumably have reciprocals also.

Question
Investigate specialisations of the cycle index and study their reciprocal
polynomials. Which ones have natural combinatorial interpretations?



The Tutte polynomial

The chromatic polynomial of a graph is generalized by the
two-variable Tutte polynomial, which has specialisations
counting many things other than colorings.
The Orbit-Counting Lemma can be systematized by the
multivariable cycle index of a permutation group, which yields
counts for orbits of the group on very general configurations.

Problem
Combine the two approaches, to count orbits of G on graph-theoretic
objects counted by the Tutte polynomial.
I will briefly describe the situation for flows and tensions on a
graph. This is taken from a paper with Bill Jackson and Jason
Rudd.



Tensions and flows

Let A be a finite abelian group. Choose a fixed but arbitrary
orientation of the edges of the graph Γ.

I A tension on Γ (over A) is a function from the set of arcs of
Γ to A with the property that the signed sum of the values
along any circuit is zero.

I A flow on Γ (over A) is a function from the set of arcs of Γ
to A with the property that the signed sum of the values on
the arcs through any vertex is zero.

We are interested in the numbers of nowhere-zero tensions and
flows.
Cleary, reversing an arc and changing the sign of the function
there does not affect the property of being a tension or flow; so
the numbers of these are independent of the orientation.



Tensions

It is easy to see that any tension is obtained as follows. Choose
a function Φ from the vertex set of Γ to A; now put on each arc
the difference between its values at the head and the tail.
Now Φ is a proper coloring of Γ if and only if the derived
tension is nowhere-zero.
There is one free choice for the value of Φ in each connected
component. So the number of nowhere-zero tensions is
PΓ(q)/qc, where c is the number of connected components of Γ,
and q = |A|. Note that the number does not depend on the
structure of A, only its order. We call PΓ(q)/qc the tension
polynomial of X.



Flows

It is often claimed that flows are “dual” to colorings. What they
are really dual to is tensions, as we will see.
Tutte showed that the number of nowhere-zero flows does not
depend on the structure of A, but only on its order; this number
is a polynomial in q = |A|, called the flow polynomial of the
graph Γ.
For planar graphs, the flow polynomial of a graph is the
tension polynomial of its dual.
There are many interesting unsolved problems about roots of
flow polynomials.



Orbital versions

There are orbital tension and flow polynomials associated with
a graph Γ and group G of automorphisms of Γ.
However, unlike the usual polynomials, they are multivariate.
We have variables xi for i = 0 and for each positive integer i for
which there is an element of order i in the group G.
To obtain a count for the number of orbits of G on tensions
and/or flows over an abelian group A, we substitute αi for xi in
the appropriate polynomial, where αi is the number of
solutions of ia = 0 for a ∈ A. Note that α0 = |A| and α1 = 1; so
if G is trivial, the result depends only on |A|, in agreement with
Tutte’s observation.



An example

The Petersen graph is a bit big, so I will consider the following
graph. Edges are directed top-to-bottom, and the letters
indicate the values (in an abelian group A) of the function.
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The group G consists of the identity, the left-to-right reflection
r1, the top-to-bottom reflection r2, and their product.



Orbits on nowhere-zero tensions
Let q = |A| and αi as before.
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I For a tension, we have a + d = b = c + e, so there are
(q− 1)(q− 2)2 non-zero tensions.

I A tension is fixed by r1 if a = c. So there are (q− 1)(q− 2)
such tensions.

I A tension is fixed by r2 if d = −a, e = −c and hence b = 0.
So there are no fixed tensions.

I A tension is fixed by r1r2 if and only if e = −a, d = −c, and
b = −b. So 2b = 0 (α2 choices), then there are q− 2 choices
for a, after which everything is determined. So α2(q− 1)
fixed tensions.

So the orbital tension polynomial is

1
4
(x0 − 1)((x0 − 1)(x0 − 2) + x2).



Orbits on nowhere-zero flows
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I For a flow, we have d = a, e = c, and a + b + c = 0. So
(q− 1)(q− 2) choices.

I A flow is fixed by r1 if a = b. So c = −2a and we require
2a 6= 0: q− α2 choices.

I A flow is fixed by r2 if 2a = 2b = 2c = 0. So
(α2 − 1)(α2 − 2) choices.

I A flow is fixed by r1r2 if a + e = c + d = 2b = 0. Then
a + c = 0, so b = 0, and there are no fixed flows.

So the orbital flow polynomial is

1
4
((x0 − 1)(x0 − 2) + (x0 − x2) + (x2 − 1)(x2 − 2)).



Matroids

In the paper with Jackson and Rudd, we also
I combine the tension and flow polynomials into an orbital

Tutte polynomial associated with a graph and a group of
automorphisms, having two potentially infinite sequences
of variables;

I extend the theory from graphs to the class of matroids
representable over principal ideal domains (this also
allows us to define an orbital weight enumerator of a
linear code).

I will not attempt to describe the construction here.



Matroids and cycle index

Looking further, it is interesting to speculate that there are
permutation groups which have the property that the cycle
index (or some specialisation of it) has a reciprocal polynomial
which is the orbital Tutte polynomial of a matroid admitting
the group as automorphisms.
One class of groups for which some results have been obtained
consists of those which are the hyperplane families of
permutation geometries, in the sense of Michel Deza. These are
the analogue, in the semilattice of partial permutations on a set,
of the geometry of flats of a matroid in the Boolean lattice of
subsets.



More precisely, these are the permutation groups in which the
stabiliser of any finite sequence of points acts transitively on
the points it moves (if any).
These groups have all been classified (by Zil’ber for rank at
least 7, by complicated geometric arguments; by Maund, using
the Classification of Finite Simple Groups, for all ranks greater
than 1.)
Some connections between cycle index of the group and Tutte
polynomial of the matroid have been established for these
groups, but the situation is still not well understood.


