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Association schemes
Association schemes were invented by Bose and his school as
carriers of partially balanced incomplete-block designs, in cases
where balanced designs are not available. They can be defined
in several ways: I use the matrix definition.
An association scheme is defined by a set {Ao, A1, ..., A} of
zero-one matrices of order n satisfying
==~ the sum of the matrices is the all-1 matrix J;
=" A = I, the identity matrix;
=27 each A, is symmetric;

r
B AA =) pi-‘]-Ak for all i, j; that is, the linear span of the
k=0

matrices is closed under multiplication.
The matrices are called the basis matrices of the scheme.
Note that another way of thinking of an association scheme is
as a partition of the set of unordered pairs from N = {1,...,n}.
We say that i and j are p-th associates if (Ap);; = 1. (This holds
for a unique p.)



Partially balanced designs

An incomplete block design is said to be partially balanced
with respect to the association scheme A if the concurrence of
two points i and j (the number of blocks containing both)
depends only on the value of p for which i and j are p-th
associates.

Since the concurrence of i and j is symmetric, it is natural to use
symmetric matrices in this context.

In the days before computers, partially balanced designs gave
rise to information matrices which were easier to invert: one
need deal with matrices of order r + 1 rather than n.

This is because we can work within the Bose-Mesner algebra of
the scheme, the commutative associative algebra generated by
{Ao, ..., A}, which is isomorphic to the algebra of (smaller)
matrices generated by {Py, ..., P;} (where (P;)y = pi-‘j).



Meet and join

The set of all partitions of a given set () is a partially ordered
set. (The partition P is below the partition Q if each part of P is
contained in a part of Q.)

This partially ordered set is actually a lattice: it has operations
of meet (greatest lower bound) and join (least upper bound).
The meet P A Q of partitions P and Q is the partition whose
parts are all non-empty intersections of a part of P with a part
of Q.

The join is a little more complicated. The part of PV Q
containing x consists of all points that can be reached from x by
moving within a part of P, then within a part of Q, then within
a part of P, and so on.

For example, if P = {{1,2,3},{4,5},{6,7}}, and
Q={{1,4},{2,3},{5},{6},{7}}, then PV Q has parts
{1,2,3,4,5} and {6,7}.



For association schemes?

An association scheme is a rather special partition of N2, where
N={1,...,n}.

Theorem
The join of association schemes is an association scheme.

Proof.
The Bose-Mesner algebra of the join is the intersection of the
Bose-Mesner algebras of the two association schemes. O

However, the meet of association schemes is not in general an
association scheme. (Consider, for example, two association
schemes on five points where the “first associate” relation is a
pentagon, but the pentagons in the two cases are (1,2, 3,4,5)
and (1,2,3,5,4).)



Some history

As I said, the theory of association schemes was developed by
R. C. Bose and his students and colleagues, beginning in the
1930s. The Bose-Mesner algebra first appeared in the 1950s.

In the 1960s, two developments occurred in different parts of
the world, in different areas of mathematics, but which
produced the same mathematical objects. Donald Higman in
the USA defined coherent configurations, and Boris Weisfeiler
in the USSR defined cellular algebras. The term “coherent
configurations” has now become standard for these, since
“cellular algebra” has meanwhile acquired a different meaning.
For more information on the history, I refer you to the slides of
talks at a recent conference in Pilsen:
https://www.iti.zcu.cz/wl2018/slides.html


https://www.iti.zcu.cz/wl2018/slides.html

Coherent configurations

Coherent configurations are like association schemes, but relax
the conditions in two ways:

=" the basis matrices are not required to be symmetric, and
are not required to commute (but it is required that the set
of basis matrices is closed under transposition);

=27 the identity is required to be a sum of basis matrices rather
than a single matrix.

As in an association scheme, the basis matrices span an algebra.
Also like an association scheme, a coherent configuration can
also be regarded as a partition of {1,...,n}2.

Higman was a group theorist; if a group G acts on the set N,
then the partition of N? into orbits of G is a coherent
configuration. Many interesting examples arise in this way.

I will say something about Weisfeiler’s approach later.



Meet and join

Theorem
Coherent configurations, ordered by the usual ordering of partitions
of N2, form a lattice; that is, two c.c.s have a meet and a join.

The proof for join is just as for association schemes, since the
intersection of matrix algebras is again a matrix algebra.

The proof for meet is different. We first observe that there is a
unique minimal coherent configuration on a set, which is below
every other coherent configuration in the partial order: its parts
are just all the subsets of N? of cardinality 1. Now, given two
coherent configurations P and Q, the set of coherent
configurations below both P and Q is non-empty, and so we
can take the join of all these configurations; this is clearly the
greatest lower bound of P and Q.

This argument fails for association schemes since there may be
no association scheme below P and Q. Note also that the meet
of c.c.s is not necessarily their meet in the partition lattice.



Weisfeiler—-Leman

More generally, the same argument shows that, given any
partition P of N?, there is a unique greatest coherent
configuration below P.

Weisfeiler and Leman gave an algorithm to find this
configuration. Regard P as an edge-coloured directed graph on
the vertex set N (by associating a colour with each part of P.)
One step in the algorithm consists in forming the multiset of
edge-colours on all paths of length 2 between i and j, for all i
and j. List the multisets that occur, and create a new
edge-coloured digraph by giving (i,) the k-th colour if the
multiset associated with (i) is the kth in the list.

Repeat until the process stabilises; the resulting partition will
be the required coherent configuration.

Weisfeiler and Leman were motivated by the graph
isomorphism problem; and their method lies close to the heart
of Babai’s recent breakthrough (finding a quasi-polynomial
algorithm for the graph isomorphism problem).



Where are the symmetric matrices?

Can we keep the algebraic structure (and closure under meet)
associated with coherent configurations while restricting
ourselves to symmetric matrices?

The product of symmetric matrices is symmetric if and only if
they commute. So using ordinary multiplication this takes us
back to association schemes.

An alternative which has been considered by several people is
to replace ordinary multiplication by the Jordan product
(named after the physicist Pascual Jordan), given by

AxB = 1(AB+BA).

It is easily verified that, if A and B are symmetric, then so is
A x B. So the set of real symmetric matrices, equipped with
addition and Jordan product, is a (non-associative) algebra.



Jordan algebras

The Jordan product satisfies the identities

AxB = BxA
(AxB)* (AxA) = Ax(Bx(AxA)).

A bilinear product satisfying these identities defines a Jordan
algebra.

As well as their applications in physics, there is an extensive
mathematical theory of Jordan algebras, which parallels that
for associative algebras. For example, the analogue of
Wedderburn’s theorem, classifying the simple algebras, is the
Jordan—-von Neumann-Wigner theorem; apart from infinite
families, there is an exceptional Jordan algebra of degree 27,
related to the exceptional Lie algebra of type Eg.



Jordan schemes

The analogue for Jordan product of an association scheme is a
set A = {Aj,...,A,} of symmetric zero-one matrices of order n
(the basis matrices) satisfying

5" the sum of the matrices is the all-1 matrix J;
=27 the identity matrix is a sum of basis matrices;

=27 each A, is symmetric;
r
=" A Aj = Z quAk for all i, j; that is, the linear span of the
k=0

matrices is closed under Jordan product.

I will call such an object a Jordan scheme.

As with association schemes, a Jordan scheme can be regarded
as a partition of the set of unordered pairs of elements of N 2
where N = {1,...,n}.



Properties

Basic formal properties of Jordan schemes are similar to those
of coherent configurations. A Jordan scheme has a
“Bose—Mesner algebra” which is a Jordan algebra.

What we have gained is the lattice structure:

Theorem
Jordan schemes, ordered by the usual ordering of partitions of N2,
form a lattice; that is, two Jordan schemes have a meet and a join.

The proof is as before. The BM algebra of the join of two
schemes is the intersection of the BM algebras of the two
schemes (and the intersection of Jordan algebras is a Jordan
algebra). There is a minimal Jordan scheme, the partition of the
set of unordered pairs into singleton sets, which is below every
Jordan scheme; so we can define the meet of two Jordan
schemes to be the join of all the Jordan schemes below both.



A construction and a problem

Here is a general construction for Jordan schemes.

Take any coherent configuration, and symmetrise it; that is, if A
is a basis matrix satisfying A # AT, then replace A and A" by
the single matrix A + A .

Problem

True or false? Every Jordan scheme arises in this way.

Initially I hoped that this would be false; that is, there would be
interesting examples of Jordan schemes not arising in this way.
But some experimentation (to be described) failed to find any
examples.

Problem
Can a theory of Jordan schemes be developed, so as to be of some use to
statisticians?

Again, I would hope so!



Some more history

The idea of Jordan schemes was introduced into statistics by
B. V. Shah in 1959.

He cites as motivation the triple rectangular lattices introduced
by Harshbarger in 1946, which are not partially balanced with
respect to any association scheme (although their duals are).
Justus Seely in 1971 discussed Jordan algebras of real
symmetric matrices, under the name quadratic subspaces.
James D. Malley set out the theory in his 1986 book. These
authors were primarily interested in estimation of variance
components.

Various authors returned to the question, including me in 2003
and 2006, and there is an account Chapter 12 of Bailey’s
Association Schemes book.

But the problems on the last slide remain unresolved.



Symmetric Weisfeiler—Leman

A small modification of the Weisfeiler-Leman algorithm finds
Jordan schemes, indeed, finds the coarsest Jordan scheme
below a given partition.

Recall the operation of WL: at each pass, we create the multiset
of colour sequences of paths of length 2 between pairs of
vertices; list these multisets, and replace the colour of (i,j) by a
new colour k if the multiset for (i, ) is the k-th in the list.

We can symmetrise this algorithm by listing the colour
sequences of paths from i to j and from j to i. Then, as in the
usual WL algorithm, repeat this step until the procedure
stabilises.

Now a small variant of our earlier problem is the following:

Problem

Is it true that the output of the symmetric WL algorithm is always the
same as what is obtained by symmetrising the coherent configuration
output by the usual WL algorithm?



The concurrence graph and the Laplacian

I finish with a related approach due to Mikhail Kagan.

Given a block design with n points (treatments), the
concurrence matrix of the design is the matrix whose (i, j) entry
is the number of blocks containing both i and j (counted with
appropriate multiplicity if the design is not binary). We insist
that i # j, that is, we do not put replication numbers on the
diagonal.

The concurrence matrix can be thought of as the adjacency
matrix of a graph (possibly with multiple edges): the number
of edges between vertices i and j is the (i, ]) entry of the matrix.
Now we define the Laplacian matrix of the graph to be

L = D — A, where A is the adjacency matrix as above, and D is
the diagonal matrix whose ith diagonal entry is the number of
blocks containing i. Thus L is a positive semi-definite
symmetric matrix with all row and column sums zero.

If the design has constant block size k, the information matrix
of the designis L/k.



Resistances and resistance distance

Now suppose that we regard the graph as an electrical
network, with each edge replaced with a 1-ohm resistor. If we
connect a 1-volt battery between two terminals, then current
will flow in the network (assuming it is connected); the
effective resistance between the two terminals is the inverse of
the current that flows.

The effective resistance between two terminals can be
computed using Kirchhoff’s voltage and current laws and
Ohm’s Law. It has two important properties:

=" Apart from scaling, the effective resistance between i and j
is equal to the variance of the estimator of the differences
between treatments i and j in the origial design. Thus the
average resistance between all pairs of terminals is the
value of the A-optimality criterion for the design.

=" Effective distance is a metric: that is, it satisfies the triangle
inequality. This metric is called resistance distance.



Some questions

Mikhail Kagan and Misha Klin have proposed resistance
distance as a replacement for symmetric Weisfeiler-Leman.
Suppose that we start with a simple graph, and compute the
resistance distances between all pairs of vertices.

We obtain a partition of the set of unordered pairs of vertices,
two pairs lying in the same class if their distances are equal.
But note that this cannot distinguish one point from another,
since a point always has distance 0 from itself. So maybe the
questions below only make sense if the Jordan scheme is
homogeneous (the identity is a basis matrix).

Problem

V=27 Is the partition we obtain from resistance distances a Jordan
scheme?

== If so, is it the largest Jordan scheme lying below the partition of
pairs into edges and nonedges of the graph (the output of the
symmetrised Weisfeiler—Leman algorithm)?



...for your attention.
A list of references follows.
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