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A little (maybe biased) history

This is roughly the story as João Araújo told it to me.
In the early days of semigroup theory, the practitioners thought
that the group of units of a semigroup would have a big
influence on its structure. So they went along to their friendly
neighbourhood group theorists with their questions.
“That’s much too hard,” said the group theorists.
So the semigroupists went away and played with idempotents
instead.
But now we know rather more about groups (especially finite
groups), so perhaps it is time to revisit some of these questions.



Permutation groups and transformation semigroups

I will only consider the finite case in this lecture.
Let Ω be a finite set. A transformation semigroup is a collection
of maps from Ω to itself which is closed under composition. If
it is also closed under inversion and contains the identity, then
it is a permutation group.
We can always, without loss, assume that our transformation
semigroup contains the identity (so that it is a transformation
monoid. The invertible elements (units) in a transformation
monoid form a permutation group.
Our goal is to relate the structure of the monoid to that of its
group of units.



What if there are no permutations?

Perhaps our transformation semigroup S contains no
permutations . . .
But the normaliser of S in the symmetric group is a
permutation group:

G = NSn(S) = {g ∈ Sn : g−1Sg = S}.

Now 〈S, G〉 = SG is a transformation semigroup containing G,
and it is equal to the product SG if S contains a permutation,
and SG∪G otherwise.
Now, S is regular (see below) if and only if 〈S, G〉 is regular.
(The proof of this is not trivial.) So for regularity, we lose
nothing by assuming that S contains a group of permutations.
However, this can fail for other properties such as idempotent
generation.



Semigroup properties

The semigroup property I am most interested in is regularity.
An element x of a semigroup S is regular if it has a “von
Neumann inverse” or “generalised inverse” y ∈ S, and element
satisfying xyx = x.
Note that, if y exists, then the element z = yxy satisfies xzx = x
and zxz = z, so x and z are generalised inverses of each other.
The semigroup S is regular if each of its elements is regular.
Another property is idempotent generation. An element e ∈ S
is idempotent if e2 = e. Many important types of semigroup are
generated by their idempotents. However, the only idempotent
in a group is the identity. So we ask whether, given a
transformation semigroup S satisfying S∩ Sn = G, the
sub-semigroup S \G is idempotent-generated.
To finish, I will say something about synchronization.



Regularity

It is clear that, if S is a transformation semigroup whose
permutation group is G, then S is regular if and only if, for any
element t ∈ S \G, the semigroup 〈G, t〉 is regular.
So we pose our general question:

Problem
For which pairs (G, t), where G is a permutation group on Ω and t a
transformation on Ω which is not a permutation, is it the case that
〈G, t〉 is regular?
This problem is not yet within reach. But over the last decade,
substantial progress has been made on this problem, by João
Araújo with various co-authors.



Classical results

The following result of Levi and McFadden in 1994 is the
prototype for results of this kind. Let Sn and Tn denote the
symmetric group and full transformation semigroup on
Ω := {1, 2, . . . , n}.

Theorem
Let t ∈ Tn \ Sn, and let S be the semigroup generated by the
conjugates g−1tg for g ∈ Sn. Then

I S is idempotent-generated;
I S is regular;
I S = 〈t, Sn〉 \ Sn.

In other words, if G = Sn, then we are in the nicest possible
situation!
An analogous result was also shown in the case where G is the
alternating group An by Levi in 1996.



The first breach in the wall

In 2011, Araújo, Mitchell and Schneider showed:

Theorem
Let G be a subgroup of Sn.

I 〈g−1ag : g ∈ G〉 is regular for all a ∈ Tn \ Sn if and only if
G = Sn or G = An or G is one of eight specific groups of low
degrees.

I 〈g−1ag : g ∈ G〉 is idempotent-generated for all a ∈ Tn \ Sn if
and only if G = Sn or G = An or G is one of three specific
groups of low degrees.

When I learned about this theorem, I was reminded of a result
in permutation group theory.



Set-transitive permutation groups
A permutation group G ≤ Sn is k-homogeneous or k-set
transitive if it acts transitively on the set of k-element subsets of
{1, . . . , n}. The group G is set-transitive if it is k-set transitive
for all k with 0 ≤ k ≤ n.
In their 1944 book Theory of Games and Economic Behavior, von
Neumann and Morgenstern asked the question: Which
permutation groups are set-transitive? (An n-player game is
obviously “fair” if its automorphism group is set-transitive –
no collection of players can have an advantage over any
equinumerous collection.)
The third edition of the book in 1953 carried a note that the
problem had been solved by C. Chevalley. However, the first
published solution was by Beaumont and Peterson in the
Canadian Journal of Mathematics in 1955:

Theorem
The permutation group G ≤ Sn is set-transitive if and only if G is Sn
or An or one of four other groups of small degrees.



Livingstone and Wagner

In 1964, Donald Livingstone and Ascher Wagner published a
remarkable paper on k-homogeneous permutation groups.
Noting that a subgroup of Sn is k-homogeneous if and only if it
is (n− k)-homogeneous, there is no loss of generality in
assuming that k ≤ n/2. They showed:

Theorem
Let G be a k-homogeneous subgroup of Sn, with 2 ≤ k ≤ n/2. Then

I G is (k− 1)-homogeneous;
I G is (k− 1)-transitive;
I if k ≥ 5, then G is k-transitive.

Here a permutation group G is k-transitive if any k-set can be
mapped to any other k-set, in any possible order, by some
element of G. Clearly this is formally stronger than
k-homogeneity, which only asks that we can map the first set to
the second in some order.



Livingstone and Wagner

The first part of this theorem, that k-homogeneity implies
(k− 1)-homogeneity for k ≤ n/2, is proved by a simple
argument using character theory of the symmetric group. The
argument can be translated into pure combinatorics and
substantially generalised, and connects to many other topics
such as graph reconstruction and Ramsey-type theorems, as
well as having infinite versions.
Subsequently, Kantor determined the k-homogeneous but not
k-transitive groups for k = 2, 3, 4. Moreover, from the
Classification of Finite Simple Groups together with work by
many authors, it is possible to give a complete list of the
k-transitive groups for k ≥ 2.



Regularity and the ut property

Suppose that t is a transformation of Ω. The kernel of t is the
equivalence relation ≡, where x ≡ y if xt = yt, or the
corresponding partition. The number of parts of the kernel is
equal to the rank of t, the cardinality of the image.
Let g be a permutation which maps the image of t to a
transversal for the kernel of t. Then gt permutes the image of t,
and so (gt)m is an idempotent with image equal to that of t, for
some m. Hence t(gt)m = t, and t is regular in 〈g, t〉. The
converse is also true.
We say that the permutation group G has the k-universal
transversal property, or k-ut for short, if, for any k-set A and
k-partition P, some element of G maps A to a transversal for P.
Thus, if G has the k-ut property, then if t is any rank k map, then
t is regular in 〈G, t〉 – so any rank k map in this semigroup is
regular.



The downward step

João Araújo and I showed the analogue of Livingstone and
Wagner part 1:

Theorem
For k ≤ n/2, if G has the k-ut property, then it has the (k− 1)-ut
property.
It follows that, if G has the k-ut property for k ≤ n/2, and t is a
map of rank k, then the semigroup 〈G, t〉 is regular. For we saw
that all its rank k elements are regular; hence all the rank k− 1
elements are regular, and so on down.
We very much wanted a simple proof of this theorem along the
lines of the Livingstone–Wagner proof. However, we failed to
find this; our proof involves a near-classification of such
permutation groups, and makes use of the Classification of
Finite Simple Groups (CFSG).

Problem
Find a simpler proof!



Tools

Of course, we use results about permutation groups, and CFSG.
We also use a variety of combinatorial tools, including

I Ramsey’s theorem, and some specific Ramsey numbers;
I properties of vertex-transitive graphs, including Watkins’

theorem on connectivity, and the result of Little, Grant and
Holton on the existence of near 1-factors.

Typically the combinatorics excludes non-2-homogeneous
groups, then the group theory takes over.



Regularity and k-ut

To summarise, our result is as follows:

Theorem
For a permutation group G of degree n and a positive integer
k ≤ n/2, the following are equivalent:

I for all rank k maps t, t is regular in 〈G, t〉;
I for all rank k maps t, t is regular in 〈g−1tg : g ∈ G〉;
I for all rank k maps t, 〈G, t〉 is regular;
I for all rank k maps t, 〈g−1tg : g ∈ G〉 is regular;
I G has the k-ut property.

We have a complete classification of these groups for k ≥ 5, and
nearly complete results for k = 3, 4.



The case k = 2

No such classification is possible for k = 2, for a simple reason:

the 2-ut property is equivalent to primitivity.

For the images of a 2-set under G are the edges of an orbital
graph for G; and 2-ut says that every orbital graph has an edge
crossing every 2-partition, i.e. is connected.
But, as Donald Higman first observed, primitivity is equivalent
to the connectivity of all orbital graphs.



The existential transversal property

We considered groups G for which 〈G, t〉 is regular for all rank k
maps t. The next step towards our ultimate goal is to determine
the groups G for which there exists a k-set A such that 〈G, t〉 is
regular for all maps t with image A.
The permutation group G has the k-existential transversal
property (for short, k-et) if there is a k-set A, the witnessing set,
such that, for any k-partition P, there exists g ∈ G such that Ag
is a transversal for P.
If G has k-et, and the image of t is the witnessing set, then as
before we find that all elements of rank k in 〈G, t〉 are regular.



The strategy

From the last observation, we obtain:

Theorem
Suppose that G satisfies k-et (with witnessing set A) and (k− 1)-ut,
where k ≤ n/2. Then, for any map t with image A, 〈G, t〉 is regular.
Unfortunately, k-et does not imply (k− 1)-ut, or even (k− 1)-et.
But, remarkably, the last implication fails for only two
permutation groups: the group AGL(4, 2) = 24 : A8 and its
subgroup 24 : A7 satisfy k-et for k ≤ 4 and for k = 6, but not for
k = 5.



Results

João Araújo, Wolfram Bentz and I have a complete
classification of groups which satisfy k-et for 4 ≤ k ≤ n/2, with
just a few undecided cases (none for k ≥ 6 and only one for
k = 5), together with a description of their witnessing sets.
Intransitive groups with k-et for 2 ≤ k ≤ n/2 have just two
orbits; if k ≥ 3, one is a fixed point and the group is
(k− 1)-homogeneous on the other. The converse is also true.
We have examined these groups G and decided, in all but a few
cases, whether it holds that 〈G, t〉 is regular for all maps t
whose image is a witnessing set.
In particular, the only transitive groups satisfying k-et for
8 ≤ k ≤ n/2 are the symmetric and alternating groups. The
only 7-et group apart from Sn and An is the Mathieu group M24.
Another interesting classification: the only primitive but not
2-homogeneous groups satisfying 4-et are the Higman–Sims
group and its automorphism group.



Idempotents

An idempotent in a semigroup S is an element e satisfying
e2 = e. The semigroup is idempotent-generated if it is
generated by its idempotents.
If S is a transformation semigroup and G a permutation group
normalising S, then according to a theorem of McAlister, the
semigroups 〈G, S〉 and 〈g−1sg : g ∈ G〉 contain the same
idempotents. So we might ask when one or other of these
semigroups is generated by its idempotents.
This is a harder question, and I will speak only of the case
〈G, t〉, where t is a rank 2 map.



The Road Closure Property

Last year, there was a long season of road closures in the
neighbourhood of St Andrews.

Let G be a transitive permutation group on Ω. By Donald
Higman’s result, G is primitive if and only if, for every orbit O
of G on the set of 2-element subsets of Ω, the orbital graph with
vertex set Ω and edge set O is connected.

We say that G has the road closure property if, given any orbit
O of G on 2-sets and any (maximal) block of imprimitivity for
the action of G on O, the graph (Ω, O \ B) is connected.



An example

Consider the automorphism group of a m×m grid: two points
are joined if they lie in the same row or column. The
automorphism group is the wreath product Sm o S2 in its
product action on m2 points.
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The edges fall into two blocks of imprimitivity under the
automorphism group: horizontal and vertical.
If workmen come and dig up all the vertical roads, then it is
impossible to get from one row to another. So this primitive
group fails to have the road closure property.



The Road Closure Conjecture

In the same way, we see that if G is primitive and non-basic
(that is, preserves a Cartesian structure on Ω), then G does not
have the road closure property.

Similarly, if G is primitive and has an imprimitive normal
subgroup of index 2, then G does not have the road closure
property.

We know one more family of groups, arising from
PΩ+(8, q) : S3 on the cosets of the parabolic subgroup
corresponding to the three leaves of the D4 diagram.

Problem
True or false: if G is a basic primitive group, not having an
imprimitive subgroup of index 2, and not one of the above examples
from triality, then G has the road closure property.



Connection with semigroups

Here is the connection with idempotent-generated semigroups.

Theorem
Let G be a transitive permutation group on Ω. Then the following
conditions on G are equivalent:

I for every rank 2 map t on Ω, the semigroup

〈G, t〉 \G

is idempotent-generated;
I G has the road closure property.

So the conjecture would give the complete classification of such
groups.



Synchronization

To conclude, a very brief account of synchronization . . .
You are in a dungeon consisting of a number of rooms.
Passages are marked with coloured arrows. Each room
contains a special door; in one room, the door leads to freedom,
but in all the others, to death. You have a map of the dungeon,
but you do not know where you are.
Can you escape? In other words, is there a sequence of colours
such that, if you use the doors in this sequence from any
starting point, you will end in a known place?



The dungeon
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You can check that (Blue, Red, Blue) takes you to room 1 no
matter where you start.



Automata

The diagram on the last page shows a finite-state deterministic
automaton. This is a machine with a finite set of states, and a
finite set of transitions, each transition being a map from the set
of states to itself. The machine starts in an arbitrary state, and
reads a word over an alphabet consisting of labels for the
transitions (Red and Blue in the example); each time it reads a
letter, it undergoes the corresponding transition.
A reset word is a word with the property that, if the automaton
reads this word, it arrives at the same state, independent of its
start state. An automaton which possesses a reset word is
called synchronizing.
Not every finite automaton has a reset word. For example, if
every transition is a permutation, then every word in the
transitions evaluates to a permutation. How do we recognise
when an automaton is synchronizing?



Automata and transformation semigroups

Combinatorially, an automaton is an edge-coloured digraph
with one edge of each colour out of each vertex. Vertices are
states, colours are transitions.
Algebraically, if Ω = {1, . . . , n} is the set of states, then any
transition is a map from Ω to itself. Reading a word composes
the corresponding maps, so the set of maps corresponding to
all words is a transformation semigroup on Ω.
So an automaton is a transformation semigroup with a
distinguished generating set.



The obstruction to synchronization

From now on our graphs are simple and undirected. An
endomorphism of a graph is a map from the graph to itself
which takes edges to edges.
The endomorphisms of a graph Γ form a transformation
semigroup; if Γ is not a null graph, then End(Γ) is not
synchronizing, since edges cannot be collapsed.

Theorem
Let S be a transformation monoid on Ω. Then S fails to be
synchronizing if and only if there exists a non-null graph Γ on the
vertex set Ω for which S ≤ End(Γ). Moreover, we may assume that
ω(Γ) = χ(Γ).



Synchronizing groups

A permutation group is never synchronizing as a monoid, since
no collapses at all occur.
We abuse language by making the following definition. A
permutation group G on Ω is synchronizing if, for any map t on
Ω which is not a permutation, the monoid 〈G, t〉 generated by
G and t is synchronizing.

Theorem
A permutation group G on Ω is non-synchronizing if and only if
there exists a G-invariant graph Γ, not complete or null, which has
clique number equal to chromatic number.



Synchronization in the hierarchy

Theorem

I A synchronizing group is primitive and basic.
I A 2-homogeneous group is synchronizing.

There are polynomial-time tests to decide if a permutation
group is transitive, primitive, basic, or 2-homogeneous.

Problem
How to decide whether a permutation group is synchronizing?
Here is a test:

I List all the non-trivial G-invariant graphs (2r − 2 of them,
where r is the number of G-orbits on 2-sets).

I Find the clique number and chromatic number of each
graph. If we find one where they are equal, then G is not
synchronizing; otherwise it is.

Very inefficient, but no known algorithm does much better . . .


