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Happy birthday Dugald!

Age(HDM) = |A5|



On the big screen

Durham 2015



The early days

After Dugald finished his undergraduate degree in Oxford, and
before embarking on his DPhil, he went to the Northern Isles to
run a chess workshop for schoolchildren (if my memory is
correct).
Before he went, I suggested to him that he might think about
the problem of whether, if G is a primitive but not highly
homogeneous group, then the number of orbits of G on n-sets
grows faster than any polynomial.
I thought this would be true, but also thought it would be bad
news if it were so.
When Dugald came back, he showed me a proof that the
growth rate is at least fractional exponential.
I will explain these things, why I was interested, why I thought
it would be bad news, and what has happened since.



Definitions

A permutation group G on the set Ω is oligomorphic if the
number of orbits of G on Ωn, or on the set of n-tuples of distinct
elements of Ω, or on the set of n-element subsets of Ω, are finite
for all natural numbers n.
The group G may be finite or infinite; thus every finite group is
oligomorphic.
The origin of the term “oligomorphic” will be explained when I
discuss Fraı̈ssé’s Theorem.



Countably categorical structures

By the upward Löwenheim–Skolem theorem, a set of first order
sentences cannot specify a unique structure, even up to
cardinality: if the set has a model, then it has arbitrarily large
models.
So to specify a structure, we have to include at least one
non-logical axiom giving the cardinality of the structure.
A countable first-order structure M is said to be ℵ0-categorical
or countably categorical if any countable first-order structure N
satisfying the same first-order sentences as M is actually
isomorphic to M.
The classic example is Cantor’s theorem, asserting that the
ordered set Q is the unique countable dense totally ordered set
without endpoints. (All hypotheses except “countable” are
first-order.)



Connections with model theory

The following theorem is due to Engeler, Ryll-Nardzewski, and
Svenonius, independently, in 1959. The three authors stated the
result in different ways; I will give just the version which forms
a bridge between model theory and permutation groups.

Theorem
For a countable first-order structure M, the following are equivalent:

I M is countably categorical;
I the automorphism group of M is oligomorphic (as a permutation

group on the domain of M.

So, in this case, first-order axiomatisability is equivalent to a
large amount of symmetry.



Homogeneity and ages

The best (in some sense only) source of examples is the
following. A relational first-order structure is homogeneous if
every isomorphism between finite substructures can be
extended to an automorphism of the structure.
Thus, if G is the automorphism group of a homogeneous
structure M, then the orbits of G on n-sets correspond to the
isomorphism types or “shapes” of the n-element substructures
of M. So G is oligomorphic if and only if M has only “few
shapes” of finite substructures (finitely many of each
cardinality).
This is the origin of the term “oligomorphic”. I understand that
it is used also in computer science for computer viruses which
can exist in only a few different forms, as opposed to
polymorphic viruses which occur in many forms.



Ages

The age of a relational structure M is the class Age(M) of all
finite structures embeddable into M. Clearly, if M is
homogeneous and Age(M) contains only finitely many
n-element structures for all natural numbers n, then Aut(M) is
oligomorphic.
Fraı̈ssé’s Theorem tells us exactly when this happens . . .



Fräıssé’s Theorem

Theorem
The class C of finite structures is the age of a countable homogeneous
relational structure M if and only if it satisfies the following:

I C is closed under isomorphism;
I C is closed under taking induced substructures;
I C contains only countably many members up to isomorphism;
I C has the amalgamation property: that is, if two structures B1

and B2 have a common substructure A, they can be “glued
together” along A (and possibly more) to form a structure in C.

If these conditions hold, then M is unique (it is called the Fraı̈ssé limit
of C).
(For the experts: I assume there is only one kind of empty set;
so the amalgamation property implies the joint embedding
property.)



A note

Any permutation group G on a countable set Ω is contained in
the automorphism group of a countable homogeneous
structure: simply take all the G-orbits on Ωn for all n as
relations.
So Fraı̈ssé’s Theorem, in a sense, constructs all examples.
Moreover, the following are equivalent:

I G is the full automorphism group of some first-order
structure;

I G is the full automorphism group of the homogeneous
structure just constructed;

I G is closed in the symmetric group Sym(Ω) (in the
topology of pointwise convergence).



Counting the orbits

Let G be an oligomorphic permutation group on Ω. I will
consider three counting functions for orbits:

I fn is the number of G-orbits on n-element subsets;
I Fn is the number of G-orbits on n-tuples of distinct

elements;
I F∗n is the number of G-orbits on all n-tuples.

We have F∗n =
n

∑
k=1

S(n, k)Fk, so (Fn) and (F∗n) determine each

other by Stirling inversion.
Also fn ≤ Fn ≤ n!fn, so (at least for rapid growth) (fn) and (Fn)
are not too far apart.



Counting the orbits, 2

To a logician, we are counting n-types over an ℵ0-categorial
theory.
To a combinatorial enumerator, we are counting labelled
structures (for (Fn) or unlabelled structures (for (fn)) in classes
satisfying the hypotheses of Fraiı̈ssé’s theorem. There are many
interesting such classes.
Note that the orbit counts for G and its closure in the symmetric
group are the same; so we can assume without loss that G is
closed, that is, G is the full automorphism group of a first-order
structure (or a homogeneous relational structure).
I will speak mainly about the sequence (fn).



Examples: constant

Theorem
Suppose that Ω is countable and G is closed, and that fn(G) = 1 for
all n. Then one of the following holds:

I Ω is bijective with Q, and G is the group of order preserving, or
order preserving/reversing, permutations;

I Ω is bijective with the set of complex roots of unity, and G is the
group of circular order preserving, or circular order
preserving/reversing, permutations;

I G = Sym(Ω).

The first two types have Fn = n! or n!/2 for n ≥ 2; the third and
fourth have Fn = (n− 1)! or (n− 1)!/2, for n ≥ 3. The last has
Fn = 1 for all n.
Further examples with fn ultimately constant can be obtained
from these by adding a finite set fixed by G.



Examples: polynomial

For the remaining examples, I will be very selective. Let S be
the symmetric group of countable degree, Sk the symmetric
group of finite degree k.
The group G = S× · · · × S (preserving all parts of a partition

into k infinite parts) has fn =

(
n + k− 1

k− 1

)
. If we allow the parts

to be permuted, then G = S Wr Sk and fn is the number of
partitions of n into at most k parts. The same value is obtained
for G = Sk Wr S (fixing a partition into infinitely many parts of
size k).
In all these examples, (fn) grows as a polynomial of degree
k− 1 in n.
So all integral degrees of polynomial growth occur.



Examples: fractional exponential

For G = S Wr S (fixing a partition into infinitely many parts), fn
is the number of partitions of n. The asymptotics of this
sequence are known very precisely; the growth is roughly
exp(n1/2).
More generally, the wreath product of a group with polynomial
growth of degree k− 1 with S has growth roughly
exp(nk/(k+1)).
It is not known whether other fractional exponential growth is
possible. But we can have growth faster than any exp nc for
c < 1 but slower than exponential: S Wr S Wr S is an example.



Primitive groups

Dugald’s great theorem says:

Theorem
There is an absolute constant c such that, if G is primitive and
oligomorphic, but fn(G) 6= 1 for some n, then fn(G) ≥ cn/p(n) for
some polynomial p.
So, for primitive groups, there is a huge gap, between constant
and exponential. Dugald gave c = 21/5; Francesca Merola
improved this to c = 1.324 . . . . The best known examples have
c = 2.

Problem
Show that c = 2 is the correct value.



Exponential growth

All known examples of primitive groups with exponential
growth are built from circles and trees. Some of these are
associated with Jordan groups arising in the work of Adeleke,
Macpherson and Neumann.
I do not know how to make this statement precise, and I
certainly cannot prove that all examples have this form.

Problem
Make sense of the above; and find all the possible exponential growth
constants lim

n→∞
(fn)1/n for primitive groups.

See Pierre Simon’s talk on Thursday for more about this.



Examples: faster growth

For k “random” linear orders on Ω (the Fraı̈ssé limit of the class
of finite sets carrying k linear orders), we have fn = (n!)k−1.
The Fraı̈ssé limit of the class of finite graphs is the Erdős–Rényi
random graph, also known as the Rado graph. Here fn is the
number of n-vertex graphs up to isomorphism, which is about
2n(n−1)/2/n!.
There is no upper bound to the growth: just take the Fraı̈ssé
limit of the class of structures containing an n-ary relations
which hold only if all arguments are distinct, for all n, to get a
sequence growing faster than (an). (However, for
homogeneous structures over finite relational languages, fn is
bounded by the exponential of a polynomial in n.)



So what should be true?

The upshot of all this is that, at least for primitive groups, the
sequence (fn) should grow rapidly and smoothly.
Dugald’s theorem shows that the first is true, but questions
remain, such as the possible exponential constants, and the
existence of gaps above exponential growth. (We have seen
factorial growth; but S acting on the set of 2-subsets of its
domain grows a little slower than factorial.)
For smoothness, we have

Theorem
The sequence (fn) is non-decreasing.
The Fraı̈ssé trick shows that the sequence can suddenly “jump
up”. But it seems that the growth cannot then slow right down.
There should be a lower bound for fn+2 in terms of fn and fn+1.
I now turn to some more algebraic tools which allow us to
prove some results of this form. But the final story is not yet
told . . .



Generating functions

We can express the counting sequences as formal power series,

f (x) = ∑ fnxn, F(x) = ∑ Fnxn/n!, F∗(x) = ∑ F∗nxn/n!.

(The exponential generating functions for the second and third
are related to the fact that they count labelled structures in the
age.)
The Stirling relationship gives us F∗(x) = F(exp(x)− 1).
The series have non-zero radius of convergence only in the
slow growth cases. The most interesting is the case where (fn)
grows polynomially.
There are formulae for direct products. Suppose that
G = H× K, where H and K act on Γ and ∆.

I If G has its intransitive action on Γ ∪ ∆, then
FG(x) = FH(x)FK(x) and fG(x) = fH(x)fK(x).

I If G has its product action on Γ× ∆, then F∗G(x) is the
Hadamard product of F∗H(x) and F∗K(x).



The orbit algebra
We can bring in more structure. First we define the “reduced
incidence algebra” of finite subsets of Ω. Let F be a field of
characteristic zero. Let Vn denote the vector space of functions
from the set of n-element subsets of Ω to F, with pointwise
operations. We take A to be the direct sum of these spaces for
all n ≥ 0, with multiplication defined as follows: for f ∈ Vn,
g ∈ Vm, let fg be the function in Vn+m defined by

(fg)(K) = ∑
L⊆K,|L|=n

f (L)g(K \ L).

Then A is a commutative and associative graded algebra.
If G is a permutation group on Ω, we let A(G) be the subalgebra
of A consisting of elements whose homogeneous components
are fixed by G (that is, functions constant on the G-orbits). Then
A(G) is also a graded algebra. If G is oligomorphic, then the
dimension of the nth homogeneous component Vn(G) is fn(G).
Thus, the Hilbert series of A(G) is the generating function f (x)
of the sequence (fn(G)).



The element e

Since there is only one empty set, V0(G) is 1-dimensional, and
is a copy of F; the element corresponding to 1 is the identity of
A(G).
An interesting element is e ∈ V1(G), the function on Ω with
constant value 1.

Theorem
e is a non-zero divisor; that is, ef = 0 implies f = 0.
Thus, multiplication by e is a monomorphism from Vn to Vn+1;
this shows that fn+1 ≥ fn.
We also see that, if G = S, then A(G) is the polynomial algebra
in one variable generated by e.



Examples

More generally, if G is the direct product of r copies of S, acting
on disjoint sets, then A(G) is a polynomial algebra in r
variables.
Now let H be a finite permutation group of degree r. The
extension of Sr by H (the wreath product S Wr H), then A(G) is
the ring of invariants of H (regarded as a linear group acting by
permutation matrices). In particular, if H = Sr, then A(S Wr H)
is the ring of symmetric polynomials in r variables, which is a
polynomial algebra in the elementary symmetric polynomials.
More generally still, if the age of a homogeneous structure
contains a subclass of “connected” structures satisfying some
simple axioms, and G is the automorphism group of the Fraı̈ssé
limit, then A(G) is a polynomial algebra generated by the
characteristic functions of the connected structures.
In particular this holds for the automorphism group of the
random graph, where the generators correspond to the finite
connected graphs.



Integral domain?

If G has a finite orbit, then A(G) has nilpotent elements (the
characteristic function of the orbit squares to zero).
On the other hand, I conjectured:

Conjecture

Suppose that G has no finite orbits. Then
I A(G) is an integral domain;
I e is prime in A(G), that is, e | fg implies e | f or e | g.

These conjectures have implications for smoothness of growth.
The first, for example, implies

fm+n(G) ≥ fm(G) + fn(G)− 1.



A proof

The first conjecture, that A(G) is an integral domain, has been
proved by Maurice Pouzet.
Pouzet’s ingenious proof (which I cannot give here) works over
the complex numbers, encoding orbits by sequences and using
ideas from language theory. The crucial result (which works in
the algebra A without any group) asserts that, if f ∈ Vm, g ∈ Vn,
and fg = 0, then the union of the supports of f and g is bounded
by a function of m and n.
The second conjecture remains open.



Polynomial growth

The most important recent development is a result of Justine
Falque and Nicolas Thiéry.

Theorem
Suppose that (fn) grows no faster than polynomial. Then

I A(G) is a Cohen–Macauley algebra;
I the generating function f (x) of (fn(G)) is a rational function of

the form

f (x) =
P(x)

∏i∈I(1− xi)
,

where the multiset I is determined by the blocks of imprimitivity
of G.

This implies that fn(G) ∼ ank for some a > 0 and k ∈N:
indeed, fn(G) is quasi-polynomial in n.



A special case

Note that the algebra of invariants of a finite permutation
group is of this form; the result on f (x) in that case follows
from Molien’s Theorem, of which the Falque–Thiéry result is a
wide generalisation.


