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Equitable partitions

We have a graph Γ on the vertex set Ω; we assume that Γ is
connected and is regular with valency k.
A partition {∆1, . . . , ∆r} of Ω is equitable if there is a matrix
M = (mij) such that a vertex in ∆i has exactly mij neighbours in
∆j.
Examples:

I The orbits of a group of automorphisms of Γ.
I The distance partition with respect to any vertex is

equitable with the same matrix if and only if the graph is
distance-regular.

I Many examples in finite geometry, including ovoids,
spreads, and Cameron–Liebler line classes, fit into this
framework.



The spectrum

Let Γ have adjacency matrix A. Let ∆ be an equitable partition
with matrix M. If vi is the characteristic function of ∆i, then

vjA = ∑ vimij,

so the spectrum of M is contained in that of A.
M always has eigenvalue k, the principal eigenvalue, since its
row sums are equal to k. We say that the partition is µ-equitable
if all non-principal eigenvalues of M are equal to µ. This means
that the vectors vi all lie in the sum of the k- and µ-eigenspaces
of A.



Perfect sets

A subset S of Ω is perfect if the partition {S, Ω \ S} is equitable;
it is µ-perfect if the partition is µ-equitable.
Now easy linear algebra shows that a partition ∆ is µ-equitable
if and only if all but at most one part of the partition is
µ-perfect.
In particular, to find all µ-equitable partitions, it suffices to find
all the minimal µ-perfect sets.



Latin square graphs

A Latin square of order n is an n× n array with entries from an
alphabet of n letters, such that each letter occurs once in each
row and once in each column.
Given a Latin square L, we define the corresponding Latin
square graph Γ(L) to have as vertices the n2 cells of the array L,
two vertices joined if they lie in the same row or the same
column or contain the same letter.
The eigenvalues of the adjacency matrix are 3(n− 1) (the
principal eigenvalue, with multiplicity 1); n− 3 (with
multiplicity 3(n− 1)), and −3 (with multiplicity (n− 1)(n− 2).



First examples

Let S be the set of n cells in a row. Then {S, Ω \ S} is equitable,
with matrix (

n− 1 2(n− 1)
2 3n− 5

)
,

so S is (n− 3)-perfect. Of course, the same applies to any
column or letter.



What G and G did

At the International Workshop on Bannai–Ito Theory in
Hangzhou, Sergey Goryainov talked about a result he had
proved with his supervisor Alexander Gavrilyuk. Although
phrased in terms of bilinear forms, it amounted to a complete
determination of the (n− 3)-equitable partitions (or,
equivalently, the minimal (n− 3)-perfect sets) in a particular
type of Latin square graph: the Cayley table of an elementary
abelian 2-group.
The result is that these are rows, columns, letters, or one more
type: subsquares of order n/2 corresponding to subgroups of
index 2 in the group.
RAB and PJC wondered whether this could be generalised . . .



More examples

They found two new constructions of (n− 3)-perfect sets:
Corner sets in the Cayley tables of cyclic groups. These have
shape 

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3


Inflation Take a Latin square L0 of order s. Replace each
occurrence of letter i be a Latin square of order t in alphabet Ai,
where the alphabets for different letters are pairwise disjoint;
this gives a Latin square L of order n = st. Moreover, given an
(s− 3)-perfect set S0 in L0, the corresponding cells in L form an
(n− 3)-perfect set.
For example, inflating a single entry in the 2× 2 Latin square
gives the G–G example.



The theorem

Theorem
Let S be a minimal (n− 3)-perfect set in the graph of a Latin square
of order n. Then S is a row, a column, a letter, or an inflation of a
corner set.
So we need no assumption about the structure of the Latin
square. The proof is quite complicated and I have no time to
describe it here.


