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Happy Birthday, Cheryl!



Cheryl Praeger and I were both born in Toowoomba, an inland
city in Queensland with many parks and gardens.



Cheryl and I both learned group theory at the University of
Queensland.



We went to Oxford, where we were both supervised by Peter
Neumann for our DPhil degrees.



Then Cheryl returned to Australia, while I stayed in Europe.



But we didn’t lose touch. I have more papers with Cheryl than
with any other except two of my coauthors (and there are
papers in this list of which I am very proud):

I P. J. Cameron and C. E. Praeger, Graphs and permutation groups with projective subconstituents, J. London
Math. Soc. (2) 25 (1982), 62–74.

I P. J. Cameron, C. E. Praeger, J. Saxl and G. M. Seitz, On the Sims conjecture and distance-transitive graphs,
Bull. London Math. Soc. 15 (1983), 499–506.

I P. J. Cameron and C. E. Praeger, On 2-arc transitive graphs of girth 4, J. Combinatorial Theory (B) 35 (1983),
1–11.

I P. J. Cameron, L. G. Kovcs, M. F. Newman and C. E. Praeger, Fixed-point-free permutations in transitive
permutation groups of prime power order, Quart. J. Math. Oxford (2) 36 (1985), 273–278.

I P. J. Cameron and C. E. Praeger, Partitioning into Steiner systems, pp. 61–71 in Combinatorics ’88 (ed. A.
Barlotti et al.), Mediterranean Press, Roma, 1992.

I P. J. Cameron and C. E. Praeger, Block-transitive t-designs, I: point-imprimitive designs, Discrete Math. 118
(1993), 33–43.

I P. J. Cameron and C. E. Praeger, Block-transitive t-designs, II: large t, Finite Geometry and Combinatorics (ed.
A. Beutelspacher et al.), Cambridge Univ. Press, 1993.

I P. J. Cameron, C. E. Praeger and N. C. Wormald, Highly arc-transitive digraphs and universal covering
digraphs, Combinatorica 13 (1993), 1–21.

I P. J. Cameron and C. E. Praeger, Constructing flag-transitive, point-imprimitive designs, J. Algebraic
Combinatorics 43 (2016), 755–769.



The photo on the first slide shows some members of our
mathematical family. It was taken at my 60th birthday
conference in Ambleside, UK.



Summary

This talk is joint work with João Araújo (Lisbon), Carlo Casolo
(Firenze) and Francesco Matucci (Campinas).
I will start with integrals of groups, an elementary problem
where some interesting things can be said but definitive results
do not yet exist.
Then I will move to the more general topic in which this is
located, which could be described as inverse group theory.
There are plenty of open problems here, and we invite you to
join us in considering them.



Integrals of groups

Let G be a group. The derived group of G is the subgroup of G
generated by all commutators [g, h] = g−1h−1gh for g, h ∈ G. It
is the smallest normal subgroup N of G for which G/N is
abelian. I don’t have to persuade you of its importance in
group theory! We denote the derived group of G by G′.
By analogy with calculus, let us say that a group H is an
integral of G if H′ is isomorphic to G. Thus we do not expect
the integral to be unique, and we do not expect all groups to
have integrals.
The main question is:

Problem
Which groups have integrals?
For example, we do not know whether D8 ×D8 is integrable.



A finiteness theorem

Theorem
Let G be a finite group. If G has an integral, then it has a finite
integral.
I outline the proof. Suppose that G has an integral H. We may
assume that H is finitely generated (since we only require
elements of H whose commutators generate G).
Now since H′ = G, each conjugacy class in H is contained in a
coset of G, and so is of bounded finite size: H is a BFC-group. A
finitely generated BFC-group has centre of finite index, and so
has a torsion-free central subgroup A of finite index. Now H/A
is finite and (H/A)′ = GA/A ∼= G.



Integrable groups

Not every group is integrable. The smallest counterexample is
the symmetric group G = S3. If H is finite and H′ = G, then
H′′ = C3 is normal in H. But the automorphism group of C3 is
abelian, so H′ = S3 centralises C3, a contradiction.
However, there are some wide classes of integrable groups, for
example:

Proposition

Every finite abelian group is integrable.
A simple proof was given by Bob Guralnick, who observed that
the abelian group A is the derived group of A o S2.



Smaller integrals?

If A is an abelian group of order n, then Guralnick’s integral has
order 2n2. Is there a smaller integral?
If n = |A| is odd, then there is an integral of order 2n, namely
the generalised dihedral group

〈A, t : t2 = 1, t−1at = a−1 for all a ∈ A〉.

Many other ad hoc constructions can be found, but we have the
following result:

Proposition

An abelian group of order n has an integral of order n1+o(1), but does
not always have one of order O(n).
We have some results on infinite abelian groups also. In
particular, there are infinite abelian groups G such that, for any
integral H, the index |H : G| is infinite.



Orders

Let S1 be the set of positive integers n for which every group of
order n is abelian, and S2 the set of positive integers for which
every group of order n is integrable.
By Guralnick’s result, S1 ⊆ S2.
The description of the set S1 is a result of Dickson in 1905
(thanks to Roman Nedela for the reference), for which a proof
by Robin Chapman on MathOverflow is recommended.

Theorem
The positive integer n has the property that every group of order n is
abelian if and only if n is cube-free and there do not exist primes p and
q such that either

I p and q divide n and q | p− 1;
I p2 and q divide n and q | p + 1.



The set S2

The description of S2 of orders for which every group is
integrable is very similar, but easier to state:

Theorem
The positive integer n has the property that every group of order n is
integrable if and only if n is cube-free and there do not exist primes p
and q such that p and q divide n and q | p− 1.
A brief word about the proof. If p and q are primes such that
q | p + 1, then there is a non-abelian group G of the form
{x 7→ ax + b} of maps on GF(p2), where b ∈ GF(p2) and a is a
q-th root of unity. But this group is integrable: an integral has
the form {x 7→ axσ + b}, where a, b are as above and σ is either
the identity or the Frobenius automorphism x 7→ xp. So
p2q ∈ S2 \ S1.



We know quite a lot more about integrable groups (and their
integrals). But some big open problems remain, among them
these three:

Find a necessary and sufficient condition for a finite group
to be integrable.

Find a good bound for the order of the smallest integral of
an integrable group.

For a prime p, is it true that the proportion of groups of
order pn which are integrable tends to 0 as n→ ∞?

A solution to the second problem would help with the first.
There obviously is a function f such that if G is an integrable
group of order n then G has an integral of order at most f (n). If
we had a good estimate for f (n), we could find all groups of
order up to f (n) and divisible by n and check whether their
derived groups are isomorphic to G.



Integrating more than once

A perfect group (one satisfying G = G′) is its own integral, and
so trivially can be integrated n times for every n.
An abelian group can also be integrated arbitrarily often.
(Suppose that R is a ring with additive group A. Then the
group of upper unitriangular matrices of order 2n + 1 over R
has the property that its nth derived group has elements of A in
the top right corner, 1 on the diagonal and 0 elsewhere, and so
is isomorphic to A.) Note that this group is nilpotent.
This is essentially all:

Theorem
A finite group G can be integrated n times for every natural number
n if and only if it is the central product of an abelian group and a
perfect group.



A corollary

Corollary

For a natural number n, the following are equivalent:
1. every group of order n is abelian;
2. every group of order n can be integrated twice;
3. every group of order n can be integrated k times, for every

natural number k;
4. n is cubefree and has no prime divisors p and q such that either

q | p− 1, or q | p + 1 and p2 | n.



Infinitely integrable groups

Aside from perfect groups, there is no infinitely integrable
finite group G, in the sense that there exists an infinite chain of
finite groups of the form

G = G′1 ≤ G1 = G′2 ≤ G2 = G′3 ≤ . . .

Indeed, Bernhard Neumann showed that there is no strictly
increasing such sequence if G2 is finitely generated.
However, if we relax the assumptions, we can succeed: there
are sequences as above with G finite but Gi infinite for i > 1,
and also sequences of finite groups such that

I G′n ≥ Gn−1 for n > 0,

I G(n)
n = G0.



A few open questions

Does the set of numbers n for which every group of order
n is integrable have a density? If so, what is it?

Which infinite integrable groups G have an integral H such
that |H : G| is finite?

If V is a variety of groups, then the set W of all integrals of
groups in V is a variety. If we have a basis for the identities
of V, can we find such a basis for W?

Is it true that, given a presentation for a group G, the
problem of deciding whether G is integrable is
undecidable? Are there classes of groups (maybe
one-relator groups) for which this problem is decidable?

Does there exist a finite non-integrable group G for which
G×G is integrable?



Inverse group theory

The material just discussed can be regarded as part of inverse
group theory. Given a construction F on groups, decide for
which groups G there exists a group H such that F(H) = G.
There are many group-theoretic constructions other than
derived group: centre, central quotient, derived quotient,
Frattini subgroup, Fitting subgroup, Schur multiplier, other
cohomology groups, and various constructions from
permutation groups.
As we will see, many of these problems are trivial, and others
have been “solved” (though open questions remain), but a
number of interesting and challenging questions are still
unsolved.



Trivial cases

We shall regard the inverse problem arising from a construction
F as being trivial if

G = F(H)⇒ G = F(G).

For example:
I The centre of any group is abelian; but an abelian group is

its own centre.
I The Fitting subgroup of any group is nilpotent; but a

nilpotent group is its own Fitting subgroup.
I The derived quotient of any group is abelian; but an

abelian group is its own derived quotient.
So these (and several other) inverse problems are trivial.



Frattini subgroup

The Frattini subgroup Φ(G) of a finite group G can be defined
in several ways. For example,

I it is the intersection of the maximal subgroups of G;
I it is the set of non-generators of G, elements which can be

dropped from any generating set.
It is known that the Frattini subgroup is nilpotent. So the
inverse problem is:

Which nilpotent groups are Frattini subgroups of finite
groups?



Bettina Eick’s Theorem

After preliminary work by Bernhard Neumann, Gaschütz,
Allenby, and Wright, a definitive result was proved by Bettina
Eick:

Theorem
The finite group G is the Frattini subgroup of a finite group H if and
only if Inn(G) is contained in the Frattini subgroup of Aut(G),
where Aut(G) and Inn(G) are the automorphism group and inner
automorphism group of G.
However, this is not the end of the story. Eick herself remarks
that the classes of Frattini subgroups of finite groups, Frattini
subgroups of finite soluble groups, and Frattini subgroups of
finite nilpotent groups are all distinct.



Questions on inverse Frattini

Find characterisations of Frattini subgroups of p-groups,
nilpotent groups, and soluble groups.

Is it true that the proportion groups of order pn which are
Frattini subgroups tends to 0 as n→ ∞? Find estimates for
this proportion.



Schur multiplier

The Schur multiplier of a finite group G is the largest group Z
for which there exists Ḡ with Z ⊆ Ḡ′ ∩ Z(Ḡ); alternatively it is
the first cohomology group of G with coefficients in C×.
We know that every abelian group is the Schur multiplier of a
group. But not every abelian p-group is the Schur multiplier of
a p-group. (For example, Cp × Cp is not.) Which groups can
occur?



Permutation groups: Derangements

This question was raised by Rosemary Bailey, Michael Giudici,
Gordon Royle, and me in an unpublished preprint.
Let G be a transitive finite permutation group of degree n > 1.
By a theorem of Jordan, G contains a derangement. Let D(G) be
the normal subgroup generated by the derangements in G.
Then D(G) is transitive and contains all elements of G whose
number of fixed points is different from 1. Moreover, G/D(G)
permutes the D(G)α-orbits semiregularly, so |G/D(G)| ≤ n− 1.
Clearly any Frobenius complement can occur as G/D(G), since
if G is a Frobenius group then D(G) is the Frobenius kernel.
By examining lists of transitive groups, we observed that both
the Klein group V4 and the symmetric group S3 can also occur.
Could it be true that every finite group occurs?




