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John Venn

Born 4 August 1834, Hull; died 4 April 1923, Cambridge
He worked on logic and probability, and is best remembered
for the “Venn diagram”. Later he turned to historical research
on Cambridge University and in particular his college,
Gonville and Caius. The picture shows the stained glass
window commemorating him in Caius hall.



The commutative law

The commutative law states that

a× b = b× a

for all numbers a and b in some number system.
I am going to look at

I why this is true;
I why it matters;
I how and why it breaks down.



Why is a× b = b× a?
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There are a rows with b dots in each row; and there are b
columns with a dots in each column. So both a× b and b× a
count the number of dots.



But . . .

Is that a valid proof?
For most of history, nobody would have had any doubts about
that!
But suppose that a and b were each larger than the number of
elementary particles in the observable universe. Would you
still feel confident in this argument?
What if the geometry of space-time (either its curvature or its
granular fine structure) made it impossible to build a very large
rectangular array of dots, even in principle?
Should the truth of the commutative law depend on the
structure of the universe?



So how do you prove it?

Today mathematics is based on systems of axioms, and proofs
should proceed logically from the axioms.
There are two ways to prove the commutative law. One is to
use axioms for the natural numbers, such as those formulated
by Guiseppe Peano in 1889. The other is to use a more
elaborate foundation, the axioms for set theory proposed by
Zermelo and modified by Fraenkel in the early 20th century.
I will go through both arguments. Don’t give up if you are not
a mathematician: think of this as a glimpse of what we spend
our time doing.



Proof by induction

All the familiar properties of the natural numbers can be
proved from Peano’s axioms. The essential tool is mathematical
induction. I am leaving a lot out here . . .
The product a× b is defined by a× 0 = 0 and
a× (b + 1) = a× b + a. This is a definition by induction; the
first statement defines a× b when b = 0, and the second shows
how to go from any value b to the next value b + 1.
We have to prove that 0× a = 0 and (b + 1)× a = b× a + a.
Both of these require separate proofs by induction on a. For
example, for the first we have 0× 0 = 0 (which starts the
induction at a = 0) and 0× (a + 1) = 0× a + 0 = 0 + 0 = 0
(using properties of addition).
Now, if a× b = b× a, then
(b + 1)× a = b× a + a = a× b + a = a× (b + 1), and we have
won!



Set theory

The other approach is to use set theory as a basis, as most
mathematicians do now. Though the axioms are more
complicated, the proof is much simpler, and captures precisely
the intuition behind the “dot diagrams”.
We define the Cartesian product A× B of two sets A and B to
be the set of all ordered pairs (x, y), for x ∈ A, y ∈ B. (Think of x
and y as X- and Y-coordinates in the sense of Descartes.)
Now show that

I the number of elements in A× B is the product a× b,
where a and b are the numbers of elements in A and B
respectively.

I There is a natural way of matching up A× B with B×A
(just turn the ordered pairs around!), so these sets have the
same numbers of elements.



Other number systems

We use the natural numbers for counting, and the real numbers
for measuring.
The commutative law also holds in the real numbers.

Consider a rectangle with base a and height b. Its area is a× b.
Now rotate the rectangle through 90◦. The new base is b and
height a and the area hasn’t changed. So a× b = b× a.
But there are hidden assumptions here too. If space is
non-euclidean, we can’t even draw an a by b rectangle. Also,
we assume that we can rotate it by 90◦; how do we know that?



Algebra and physics

After a long struggle, mathematicians admitted the existence of
“imaginary numbers” such as the square root of −1. These
form a two-dimensional number system which became known
as the “complex numbers” including the real numbers, and
sharing most of the algebraic properties of the real numbers
(including the commutative law). Indeed they have better
properties: any polynomial equation over the complex
numbers has a solution.
This fact is known as the Fundamental Theorem of Algebra.
The great mathematician Gauss is said to have given ten
different proofs of this theorem.
The complex numbers are fundamental to physics, in particular
to quantum mechanics, the theory of the very small.



In the 1840s, William Rowan Hamilton in Dublin was trying to
extend the complex numbers to a three-dimensional number
system, without success.
On 16 October 1843 (a Monday) Hamilton was walking in
along the Royal Canal with his wife to preside at a Council
meeting of the Royal Irish Academy. Although his wife talked
to him now and again Hamilton hardly heard, for the discovery
of the quaternions, the first noncommutative algebra to be
studied, was taking shape in his mind:-

And here there dawned on me the notion that we
must admit, in some sense, a fourth dimension of
space for the purpose of calculating with triples . . . An
electric circuit seemed to close, and a spark flashed
forth.

He had invented the quaternions, and was so pleased that . . .



It follows from these equations that ij = k and ji = −k. So

i× j 6= j× i.

Hamilton had discovered the first non-commutative number
system!



Some mathematicians found this hard to accept. According to
Melanie Bayley, the Mad Hatter’s Tea Party in Lewis Carroll’s
Alice’s Adventures in Wonderland was a satire on Hamilton’s
quaternions.



Operations

The four-dimensional quaternions were very well suited to
describe the four-dimensional world of relativity when that
came along half a century later.
But we don’t actually use them, because in the meantime an
even more flexible algebraic system came along: matrices.
The reason that matrices don’t commute is because they
represent operations, which are notoriously non-commutative.
(“Multiplication” of operations means doing one and then the
other.)
Let a be the operation of putting on your socks, and b the
operation of putting on your shoes. Obviously a then b is quite
different from b then a.



Multiplying and dividing

If you multiply a number x by a and then by b, then to recover x
you should divide by b and then divide by a.
However, if multiplication is commutative, you can divide by a
and then by b to recover x. If multiplication is not commutative,
you can’t!
When a and b are operations, then a× b means “do a, then b”;
the example of shoes and socks shows that to undo the effect
you have to first undo b and then a, and in general the other
way around won’t work. (Try taking off your socks before your
shoes. It is possible, if your shoes are very loose, but not
straightforward!)
We’ll now see that this really matters.



Public-key cryptography

One of the great intellectual advances of the 20th century was
the invention of public-key cryptography by Diffie and
Hellman. I am going to describe to you a simpler precursor of
this, Diffie–Hellman key exchange.
Suppose Alice has a secret file that she wants to send to Bob.
She knows that her enemy Eve (the eavesdropper) has contacts
in the mail service. How can she make sure that the file gets to
Bob without Eve reading it first?



Picture by Neill Cameron



Why commutative?

At no time is the box sent through the post without a lock, so
Eve is unable to open it and read the file.
It is crucial to this scheme that the operations “Alice locks the
box” and “Bob locks the box” commute.
This would fail if, for example, Bob put the box inside a larger
box and locked that, since then Alice could not remove her lock.
However, there is another problem as well when we transfer
this scheme to electronics; commutativity is not enough.
We use “messages” and “numbers” interchangeably below:
any message can be encoded into a big number, and vice versa.



Suppose for example that Alice and Bob choose secret keys a
and b.

I Alice adds her key a to the message x, producing x + a, and
sends to Bob.

I Bob adds his key b, and sends x + a + b to Alice.
I Alice removes her key a, giving (x + a + b)− a = x + b,

and sends to Bob.
I Now Bob can remove his key b and read the message x.

Although x is never transmitted unencoded, all Eve has to do is
intercept the three messages x + a, x + a + b, and x + b that are
transmitted, and do a simple sum:

(x + a) + (x + b)− (x + a + b) = x.



So this is how to do it.
I Alice raises the message x to the power a, producing xa,

and sends to Bob.
I Bob raises this to the power b, and sends xab to Alice.

I Alice takes the ath root, giving a
√

xab = xb, and sends to
Bob.

I Now Bob can take the bth root and read the message x.
Now there is no straightforward way for Eve to obtain the
message. (Do you remember how to extract a square root?)
But when Alice and Bob choose their keys, they do so in such a
way that they are able to extract the appropriate roots.
So it is the difficulty of extracting roots without a key that
keeps your data safe.



Logic and mathematics

Reasoning and logic are to each other as health is to
medicine, or – better – as conduct is to morality.
Reasoning refers to a gamut of natural thought
processes in the everyday world. Logic is how we
ought to think if objective truth is our goal – and the
everyday world is very little concerned with objective
truth. Logic is the science of the justification of
conclusions we have reached by natural reasoning.
My point here is that, for such natural reasoning to
occur, consciousness is not necessary. The very reason
we need logic at all is because most reasoning is not
conscious at all.

Julian Jaynes, The Origin of Consciousness in the Breakdown of the
Bicameral Mind



Turning logic into algebra

While Hamilton was creating his quaternions, George Boole
had the idea of turning logic into algebra.
For two thousand years, it was believed that Aristotle had said
the last word on logic. This despite the fact that, starting in the
middle ages, logicians (including William of Ockham and
Leibniz) had made great advances.
Aristotle’s logic was essentially restricted to arguments like
this:

All men are mortal; Socrates is a man; therefore
Socrates is mortal.



A logic book that makes you laugh
In The Thousand-Petalled Lotus, Sangharakshita (an Englishman
who became a Buddhist monk) relates that, shortly after his
ordination as a sramanera (novice monk), he had an interlude
at the Benares Hindu University, studying Abhidhamma
(Buddhist scripture), Pali (the language in which it was
written), and Logic with Bhikkhu Kashyap. He explains the
enjoyment he got from Logic:

Though I had read quite widely in philosophy, for some
reason I had neglected [logic] . . . It was therefore with some
trepidation that I set about making good the omission. But
I need not have worried. Once I had emerged from the
thickets of Formal Logic I found myself in one of the most
fascinating stretches of the intellectual terrain . . . F. C. S.
Schiller’s Formal Logic, a radical empiricist’s exposure of the
aridities and absurdities of the subject, as traditionally
expounded, was undoubtedly one of the most hilarious
books I had encountered. While I was reading it there
escaped me chuckles–even guffaws–which Kashyapji never
heard when I was studying Pali.



In fact Schiller is attacking a straw man, since by his time (early
20th century) logic had awoken from its slumbers. Still, we
have to plunge back into the thickets for a while.
Remember George Boole deciding to treat logic as a branch of
algebra. If A and B are collections of things, Boole regarded
A + B as the collection of things lying in either A or B, and A · B
as the collection of things in both A and B.
The easiest way to visualise this is to use John Venn’s insight:

The red region is A · B. It is clear that A · B = B ·A.



William of Ockham and Augustus De Morgan

A little more notation. We let A′ denote the contradictory
opposite of A, so that A′ consists of all the things not included
in A. Then De Morgan’s laws state:

I (A · B)′ = A′ + B′,
I (A + B)′ = A′ · B′.

Venn diagrams make this clear. But already in the 14th century,
William of Ockham had stated:

I the contradictory opposite of a copulative proposition is a
disjunctive proposition composed of the contradictory
opposites of its parts.

I the contradictory opposite of a disjunctive proposition is a
copulative proposition composed of the contradictories of
the parts of the disjunctive proposition.

Exactly the same thing!



Good and bad

Using Venn diagrams, it is easy to prove things about the
system just described. For example,

(A + B) · C = (A · C) + (B · C),

which is the distributive law (the rule for expanding brackets),
just what you would expect. But also

(A · B) + C = (A + C) · (B + C),

which is rather less natural, and indeed is somewhat
disturbing!



It turns out to be better to use a different definition of addition:
take A + B to be the collection of things lying in either A or B
but not both:

With this choice, the “usual rules of algebra” (commutative,
associative and distributive laws, etc.) also apply. But there is
still a surprise:

A + A = 0.

(Nothing can be in one of A and A without being in both!)



From the I Ching . . .
Of course, this is one of the laws of binary arithmetic. It is said
that Leibniz, who invented the binary system, had been
amazed to learn from Jesuit missionaries to China that the
Chinese were already using this system.

If there are n things in the universe, then we can represent any
collection A by an n-tuple with entries 0 and 1: the ith entry is 1
if the ith object belongs to A, and is 0 otherwise. Then the
addition just descibed is just coordinatewise addition
modulo 2. There are six bits, and so 26 = 64 different situations
can be described by their combinations.



. . . to the planets

This system was used to transmit information in the early days
of space exploration. The Mariner probes to Mars used linear
functions of five variables to encode information: six bits of
data (a1, . . . , a5, b) would be encoded as the linear function
a1x1 + · · ·+ a5x5 + b. Any two such linear functions differ in at
least 16 values, so if seven or fewer errors occur during
transmission then the correct message can be deduced.

Modern error correction uses more sophisticated versions
based on the same idea.



Is the universe non-commutative?

One of the contenders for a theory of quantum gravity is
non-commutative geometry. This is an attempt to complete the
20th century revolution in physics along the following lines:

I General relativity is the theory of curved space-time;
according to this, momentum coordinates in different
directions don’t commute. (If you draw a “parallelogram
of vectors” on a curved surface, the ends will not join up.)

I Quantum mechanics says that position and momentum
coordinates don’t commute with one another; it regards
these coordinates as operators, which bring in the
non-commutativity.

I Non-commutative geometry would add the assertion that
position coordinates in different directions don’t commute
with each other.

The jury is still out on this.



Quantum logic

Unlike in Venn’s case, the logic of quantum mechanics is not
commutative. This is because a system is affected in unknown
ways when a measurement is made on it.
If we say, “The particle has position x and momentum p”, we
have carried out two measurements in order; the measurement
of momentum means we lose knowledge of position,
depending on how accurate our measurement of momentum is.
Thus, “The particle has momentum p and position x” is a
completely different assertion.
What would Lewis Carroll have made of that, I wonder?



Quantum computers

A quantum computer with n quantum bits (or qubits) could in
principle perform 2n computations simultaneously (one for
each combination of values of the qubits) and only output the
result of the one successful calculation.
It is as if we toss the six yarrow sticks for the I Ching and all
26 = 64 possibilities are simultaneously realised.
Nobody has built a nontrivial quantum computer yet, but
perhaps the universe is a quantum computer inside which we
live . . .



Tweedledee’s view

The last word goes to Tweedledee:

“Contrariwise,” continued Tweedledee, “if it was so, it
might be; and if it were so, it would be; but as it isn’t,
it ain’t. That’s logic.”


