

Laplacian eigenvalues and optimality: I. Block designs

R. A. Bailey and Peter J. Cameron

Groups and Graphs, Designs and Dynamics
Yichang, China, August 2019

Mathematicians and statisticians

There is a very famous joke about Bose's work in Giridh. Professor Mahalanobis wanted Bose to visit the paddy fields and advise him on sampling problems for the estimation of yield of paddy. Bose did not very much like the idea, and he used to spend most of the time at home working on combinatorial problems using Galois fields. The workers of the ISI used to make a joke about this. Whenever Professor Mahalanobis asked about Bose, his secretary would say that Bose is working in fields, which kept the Professor happy.

Bose memorial session, in *Sankhyā* 54 (1992)
(special issue devoted to the memory of Raj Chandra Bose;),
i–viii.

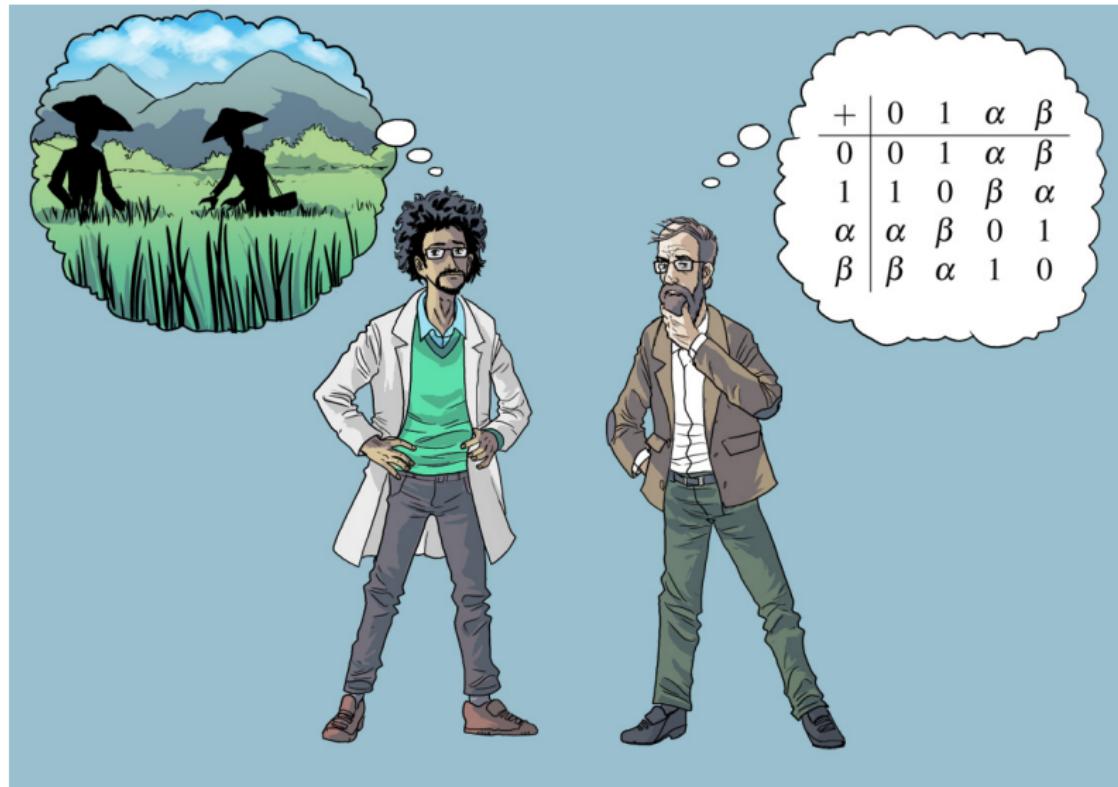
Mathematicians and statisticians

There is a very famous joke about Bose's work in Giridih. Professor Mahalanobis wanted Bose to visit the paddy fields and advise him on sampling problems for the estimation of yield of paddy. Bose did not very much like the idea, and he used to spend most of the time at home working on combinatorial problems using Galois fields. The workers of the ISI used to make a joke about this. Whenever Professor Mahalanobis asked about Bose, his secretary would say that Bose is working in fields, which kept the Professor happy.

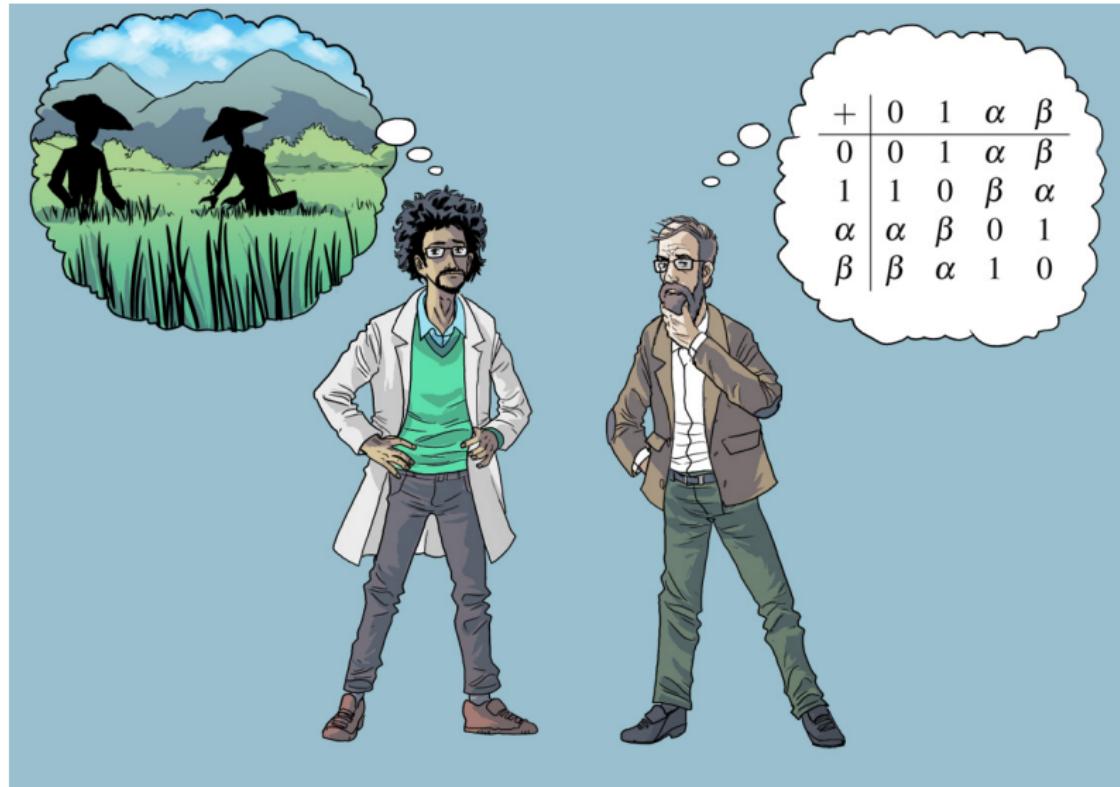
Bose memorial session, in *Sankhyā* 54 (1992)
(special issue devoted to the memory of Raj Chandra Bose;),
i–viii.

This comment refers to his years at the Indian Statistical Institute.

Mathematicians and statisticians



Mathematicians and statisticians



Thanks to Neill Cameron for this picture.

Outline

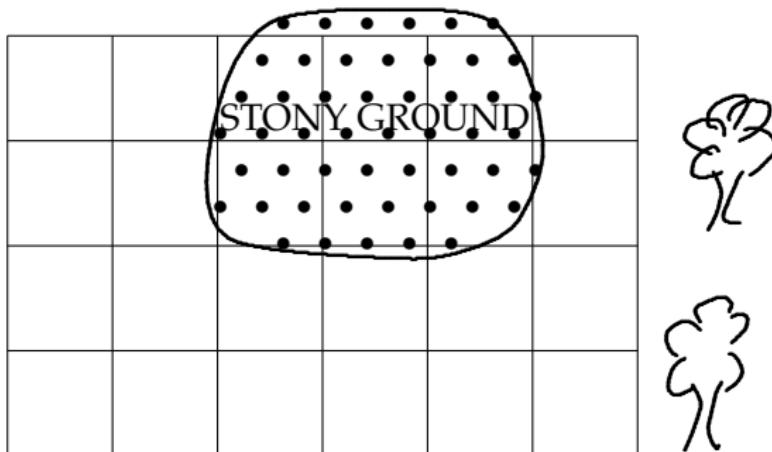
1. Experiments in blocks.
2. Complete-block designs.
3. Incomplete-block designs.
4. Matrix formulae.
5. Constructions.
6. Laplacian matrix and information matrix.
7. Estimation and variance.
8. Reparametrization.

Section 1

Experiments in blocks.

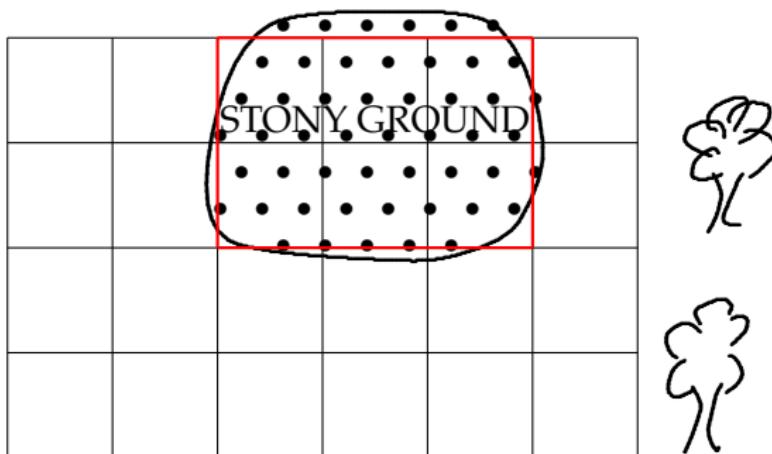
An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?



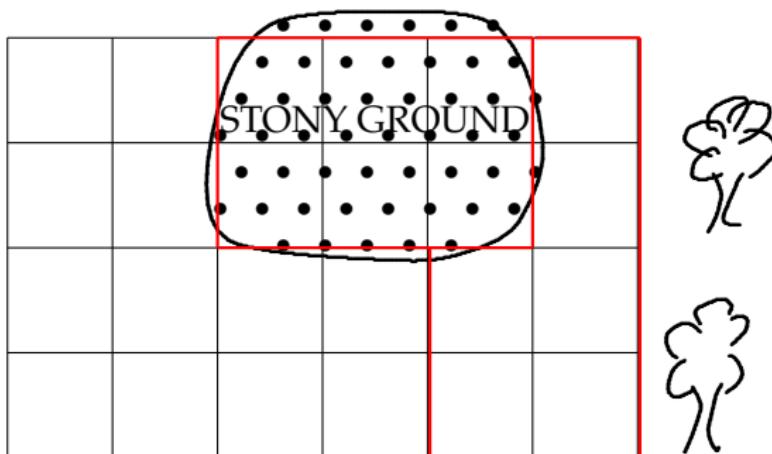
An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?



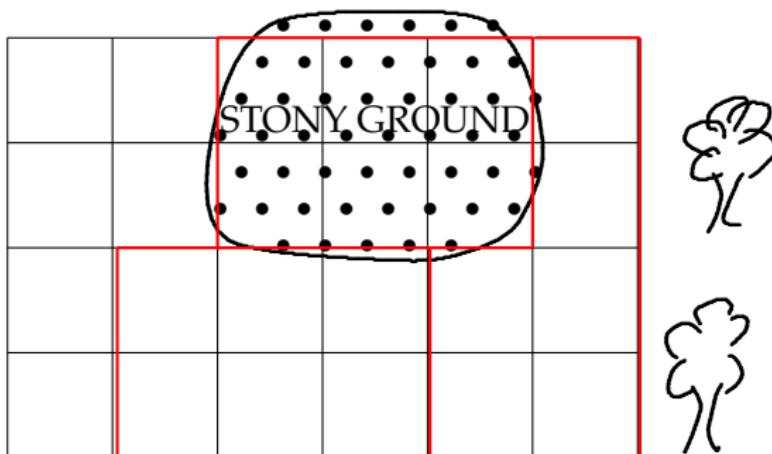
An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?



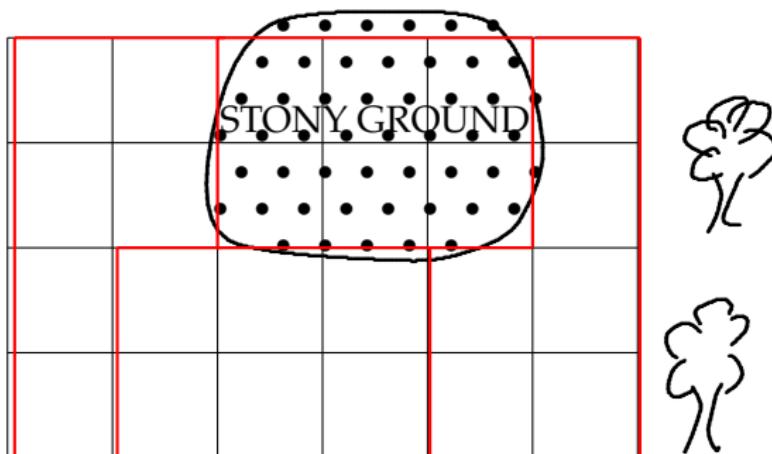
An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?



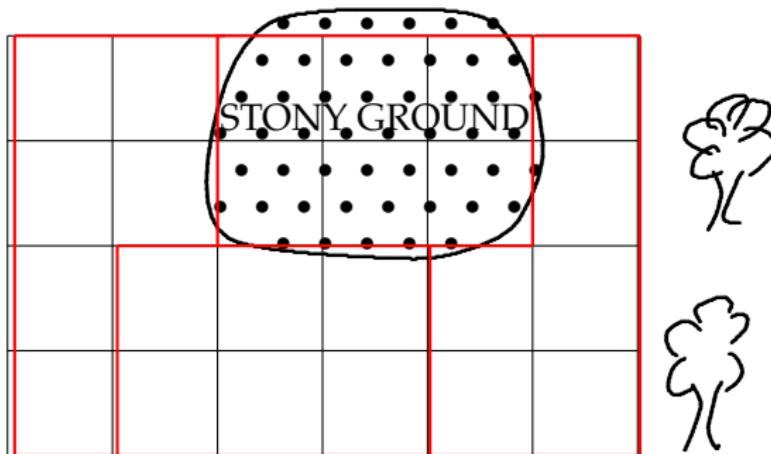
An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?



An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?



Partition the experimental units into homogeneous **blocks** and plant each variety on one plot in each block.

An experiment on people

Several studies have suggested that drinking red wine gives some protection against heart disease, but it is not known whether the effect is caused by the alcohol or by some other ingredient of red wine. To investigate this, medical scientists enrolled 40 volunteers into a trial lasting 28 days.

An experiment on people

Several studies have suggested that drinking red wine gives some protection against heart disease, but it is not known whether the effect is caused by the alcohol or by some other ingredient of red wine. To investigate this, medical scientists enrolled 40 volunteers into a trial lasting 28 days.

For the first 14 days, half the volunteers drank two glasses of red wine per day, while the other half had two standard drinks of gin. For the remaining 14 days the drinks were reversed: those who had been drinking red wine changed to gin, while those who had been drinking gin changed to red wine.

An experiment on people

Several studies have suggested that drinking red wine gives some protection against heart disease, but it is not known whether the effect is caused by the alcohol or by some other ingredient of red wine. To investigate this, medical scientists enrolled 40 volunteers into a trial lasting 28 days.

For the first 14 days, half the volunteers drank two glasses of red wine per day, while the other half had two standard drinks of gin. For the remaining 14 days the drinks were reversed: those who had been drinking red wine changed to gin, while those who had been drinking gin changed to red wine.

On days 14 and 28,

the scientists took a blood sample from each volunteer and measured the amount of inflammatory substance in the blood.

An experiment on people

Several studies have suggested that drinking red wine gives some protection against heart disease, but it is not known whether the effect is caused by the alcohol or by some other ingredient of red wine. To investigate this, medical scientists enrolled 40 volunteers into a trial lasting 28 days.

For the first 14 days, half the volunteers drank two glasses of red wine per day, while the other half had two standard drinks of gin. For the remaining 14 days the drinks were reversed: those who had been drinking red wine changed to gin, while those who had been drinking gin changed to red wine.

On days 14 and 28,

the scientists took a blood sample from each volunteer and measured the amount of inflammatory substance in the blood.

Each experimental unit consists of one volunteer for 14 days.

So there are 80 experimental units.

Each volunteer forms a block of size 2.

An experiment on people

Several studies have suggested that drinking red wine gives some protection against heart disease, but it is not known whether the effect is caused by the alcohol or by some other ingredient of red wine. To investigate this, medical scientists enrolled 40 volunteers into a trial lasting 28 days.

For the first 14 days, half the volunteers drank two glasses of red wine per day, while the other half had two standard drinks of gin. For the remaining 14 days the drinks were reversed: those who had been drinking red wine changed to gin, while those who had been drinking gin changed to red wine.

On days 14 and 28,

the scientists took a blood sample from each volunteer and measured the amount of inflammatory substance in the blood.

Each experimental unit consists of one volunteer for 14 days. So there are 80 experimental units.

Each volunteer forms a block of size 2.

The treatments are the 2 types of drink.

An experiment on diffusion of proteins

A post-doc added from 0 to 4 extra green fluorescent proteins to cells of *Escherichia coli*, adding 0 to each of 10 cells, 1 to each of 10 further cells, and so on. Then she measured the rate of diffusion of proteins in each of the 50 cells.

An experiment on diffusion of proteins

A post-doc added from 0 to 4 extra green fluorescent proteins to cells of *Escherichia coli*, adding 0 to each of 10 cells, 1 to each of 10 further cells, and so on. Then she measured the rate of diffusion of proteins in each of the 50 cells.

This is what she did.

Monday	Tuesday	Wednesday	Thursday	Friday
0000000000	1111111111	2222222222	3333333333	4444444444

An experiment on diffusion of proteins

A post-doc added from 0 to 4 extra green fluorescent proteins to cells of *Escherichia coli*, adding 0 to each of 10 cells, 1 to each of 10 further cells, and so on. Then she measured the rate of diffusion of proteins in each of the 50 cells.

This is what she did.

Monday	Tuesday	Wednesday	Thursday	Friday
0000000000	1111111111	2222222222	3333333333	4444444444

Are the perceived differences caused by differences in size?

An experiment on diffusion of proteins

A post-doc added from 0 to 4 extra green fluorescent proteins to cells of *Escherichia coli*, adding 0 to each of 10 cells, 1 to each of 10 further cells, and so on. Then she measured the rate of diffusion of proteins in each of the 50 cells.

This is what she did.

Monday	Tuesday	Wednesday	Thursday	Friday
0000000000	1111111111	2222222222	3333333333	4444444444

Are the perceived differences caused by differences in size?

Did she get better at preparing the samples as the week wore on?

An experiment on diffusion of proteins

A post-doc added from 0 to 4 extra green fluorescent proteins to cells of *Escherichia coli*, adding 0 to each of 10 cells, 1 to each of 10 further cells, and so on. Then she measured the rate of diffusion of proteins in each of the 50 cells.

This is what she did.

Monday	Tuesday	Wednesday	Thursday	Friday
0000000000	1111111111	2222222222	3333333333	4444444444

Are the perceived differences caused by differences in size?

Did she get better at preparing the samples as the week wore on?

Were there environmental changes in the lab that could have contributed to the differences?

Diffusion of proteins: continued

What she did.

Monday	Tuesday	Wednesday	Thursday	Friday
0000000000	1111111111	2222222222	3333333333	4444444444

Diffusion of proteins: continued

What she did.

Monday	Tuesday	Wednesday	Thursday	Friday
0000000000	1111111111	2222222222	3333333333	4444444444

Better to regard each day as a block.

Monday	Tuesday	Wednesday	Thursday	Friday
0011223344	0011223344	0011223344	0011223344	0011223344

Diffusion of proteins: continued

What she did.

Monday	Tuesday	Wednesday	Thursday	Friday
0000000000	1111111111	2222222222	3333333333	4444444444

Better to regard each day as a block.

Monday	Tuesday	Wednesday	Thursday	Friday
0011223344	0011223344	0011223344	0011223344	0011223344

There may still be systematic differences within each day,
so—better still—randomize within each day.

Diffusion of proteins: continued

What she did.

Monday	Tuesday	Wednesday	Thursday	Friday
0000000000	1111111111	2222222222	3333333333	4444444444

Better to regard each day as a block.

Monday	Tuesday	Wednesday	Thursday	Friday
0011223344	0011223344	0011223344	0011223344	0011223344

There may still be systematic differences within each day,
so—better still—randomize within each day.

Monday	Tuesday	Wednesday	Thursday	Friday
1040223134	2230110443	1421324030	4420013312	3204320411

An experiment on detergents

In a consumer experiment, twelve housewives volunteer to test new detergents. (This was 40 years ago, when most homemakers in the UK were female.) There are 16 new detergents to compare, but it is not realistic to ask any one volunteer to compare this many detergents.

Each housewife tests one detergent per washload for each of four washloads, and assesses the cleanliness of each washload.

An experiment on detergents

In a consumer experiment, twelve housewives volunteer to test new detergents. (This was 40 years ago, when most homemakers in the UK were female.) There are 16 new detergents to compare, but it is not realistic to ask any one volunteer to compare this many detergents.

Each housewife tests one detergent per washload for each of four washloads, and assesses the cleanliness of each washload.

The experimental units are the washloads.

The housewives form 12 blocks of size 4.

An experiment on detergents

In a consumer experiment, twelve housewives volunteer to test new detergents. (This was 40 years ago, when most homemakers in the UK were female.) There are 16 new detergents to compare, but it is not realistic to ask any one volunteer to compare this many detergents.

Each housewife tests one detergent per washload for each of four washloads, and assesses the cleanliness of each washload.

The experimental units are the washloads.

The housewives form 12 blocks of size 4.

The treatments are the 16 new detergents.

Experiments in blocks

I have v treatments that I want to compare.
I have b blocks, with k plots in each block.

Experiments in blocks

I have v treatments that I want to compare.

I have b blocks, with k plots in each block.

blocks	b	k	treatments	v
contiguous plots	4	6	cabbage varieties	6
volunteers	40	2	drinks	2
days	5	10	numbers of cells	5
housewives	12	4	detergents	16

Experiments in blocks

I have v treatments that I want to compare.

I have b blocks, with k plots in each block.

blocks	b	k	treatments	v
contiguous plots	4	6	cabbage varieties	6
volunteers	40	2	drinks	2
days	5	10	numbers of cells	5
housewives	12	4	detergents	16

How should I choose a block design?

How should I randomize it?

How should I analyse the data after the experiment?

What makes a block design good?

Section 2

Complete-block designs.

Complete-block designs: construction and randomization

For a **complete**-block design,
there are v treatments, and b blocks of size v .

Complete-block designs: construction and randomization

For a **complete**-block design,
there are v treatments, and b blocks of size v .

Construction Each treatment occurs on one plot per block.

Complete-block designs: construction and randomization

For a **complete**-block design,
there are v treatments, and b blocks of size v .

Construction Each treatment occurs on one plot per block.

Randomization Within each block independently,
randomize the order of the treatments.

Statistical Model

Let $f(\omega)$ = treatment on plot ω
 $g(\omega)$ = block containing plot ω .

We assume that the response Y_ω on plot ω satisfies:

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega,$$

where τ_i is a constant depending on treatment i ,
 β_j is a constant depending on block j ,

and the ε_ω are independent (normal) random variables with zero mean and variance σ^2 .

Statistical Model

Let $f(\omega)$ = treatment on plot ω
 $g(\omega)$ = block containing plot ω .

We assume that the response Y_ω on plot ω satisfies:

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega,$$

where τ_i is a constant depending on treatment i ,
 β_j is a constant depending on block j ,

and the ε_ω are independent (normal) random variables with zero mean and variance σ^2 .

We can replace τ_i and β_j by $\tau_i + c$ and $\beta_j - c$ without changing the model. So we cannot estimate τ_1, \dots, τ_v .

Statistical Model

Let $f(\omega)$ = treatment on plot ω
 $g(\omega)$ = block containing plot ω .

We assume that the response Y_ω on plot ω satisfies:

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega,$$

where τ_i is a constant depending on treatment i ,
 β_j is a constant depending on block j ,

and the ε_ω are independent (normal) random variables with zero mean and variance σ^2 .

We can replace τ_i and β_j by $\tau_i + c$ and $\beta_j - c$ without changing the model. So we cannot estimate τ_1, \dots, τ_v .

But we can estimate treatment differences $\tau_i - \tau_l$,
and we can estimate sums $\tau_i + \beta_j$.

Estimating treatment differences

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega$$

An estimator for $\tau_1 - \tau_2$ is

Estimating treatment differences

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega$$

An estimator for $\tau_1 - \tau_2$ is

- ▶ **linear** if it is a linear combination of Y_1, Y_2, \dots, Y_{bk} ;

Estimating treatment differences

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega$$

An estimator for $\tau_1 - \tau_2$ is

- ▶ linear if it is a linear combination of Y_1, Y_2, \dots, Y_{bk} ;
- ▶ **unbiased** if its expectation is equal to $\tau_1 - \tau_2$.

Estimating treatment differences

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega$$

An estimator for $\tau_1 - \tau_2$ is

- ▶ **best** if it has minimum variance subject to the other conditions;
- ▶ **linear** if it is a linear combination of Y_1, Y_2, \dots, Y_{bk} ;
- ▶ **unbiased** if its expectation is equal to $\tau_1 - \tau_2$.

Estimating treatment differences

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega$$

An estimator for $\tau_1 - \tau_2$ is

- ▶ best if it has minimum variance subject to the other conditions;
- ▶ linear if it is a linear combination of Y_1, Y_2, \dots, Y_{bk} ;
- ▶ unbiased if its expectation is equal to $\tau_1 - \tau_2$.

For a complete-block design,

the best linear unbiased estimator (often abbreviated to BLUE)
of $\tau_1 - \tau_2$ is

(average response on treatment 1) – (average response on treatment 2).

Estimating treatment differences

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega$$

An estimator for $\tau_1 - \tau_2$ is

- ▶ best if it has minimum variance subject to the other conditions;
- ▶ linear if it is a linear combination of Y_1, Y_2, \dots, Y_{bk} ;
- ▶ unbiased if its expectation is equal to $\tau_1 - \tau_2$.

For a complete-block design,

the best linear unbiased estimator (often abbreviated to BLUE) of $\tau_1 - \tau_2$ is

$(\text{average response on treatment 1}) - (\text{average response on treatment 2})$.

The variance of this estimator is

$$\frac{2\sigma^2}{b}.$$

Residuals

For a complete-block design,
the best linear unbiased estimator of $\tau_i + \beta_j$ is

(average response on treatment i) + (average response on block j)
- (average response overall).

Residuals

For a complete-block design,
the best linear unbiased estimator of $\tau_i + \beta_j$ is

(average response on treatment i) + (average response on block j)
- (average response overall).

Write this as $\hat{\tau}_i + \hat{\beta}_j$.

Residuals

For a complete-block design,
the best linear unbiased estimator of $\tau_i + \beta_j$ is

(average response on treatment i) + (average response on block j)
- (average response overall).

Write this as $\hat{\tau}_i + \hat{\beta}_j$.

The **residual** on experimental unit ω is

$$Y_\omega - \hat{\tau}_{f(\omega)} - \hat{\beta}_{g(\omega)}.$$

Residuals

For a complete-block design,
the best linear unbiased estimator of $\tau_i + \beta_j$ is

(average response on treatment i) + (average response on block j)
- (average response overall).

Write this as $\hat{\tau}_i + \hat{\beta}_j$.

The residual on experimental unit ω is

$$Y_\omega - \hat{\tau}_{f(\omega)} - \hat{\beta}_{g(\omega)}.$$

The **residual sum of squares** RSS = $\sum_\omega (Y_\omega - \hat{\tau}_{f(\omega)} - \hat{\beta}_{g(\omega)})^2 =$

$$\sum_\omega Y_\omega^2 - \sum_{i=1}^v \frac{(\text{total on treatment } i)^2}{b} - \sum_{j=1}^b \frac{(\text{total on block } j)^2}{v} + \frac{(\sum_\omega Y_\omega)^2}{bk}.$$

Estimating variance

Theorem

$$\mathbb{E}(\text{RSS}) = (b - 1)(v - 1)\sigma^2.$$

Estimating variance

Theorem

$$\mathbb{E}(\text{RSS}) = (b - 1)(v - 1)\sigma^2.$$

Hence

$$\frac{\text{RSS}}{(b - 1)(v - 1)}$$

is an unbiased estimator of σ^2 .

Comments

1. We are not usually interested in the block parameters β_j .

Comments

1. We are not usually interested in the block parameters β_j .
2. If $k = vs$ and each treatment occurs s times in each block, then estimation is similar.

Then the variance of the best linear unbiased estimator of $\tau_i - \tau_j$ is

$$\frac{2\sigma^2}{bs}.$$

Comments

1. We are not usually interested in the block parameters β_j .
2. If $k = vs$ and each treatment occurs s times in each block, then estimation is similar.

Then the variance of the best linear unbiased estimator of $\tau_i - \tau_j$ is

$$\frac{2\sigma^2}{bs}.$$

3. In particular, if there is a single block and each treatment occurs r times then the variance of the best linear unbiased estimator of $\tau_i - \tau_j$ is

$$\frac{2\sigma^2}{r}.$$

Section 3

Incomplete-block designs.

Incomplete-block designs

For an **incomplete**-block design,
there are v treatments, and b blocks of size k , where $2 \leq k < v$.

Incomplete-block designs

For an **incomplete**-block design,
there are v treatments, and b blocks of size k , where $2 \leq k < v$.

Construction How do we choose a suitable design?

Incomplete-block designs

For an **incomplete**-block design,
there are v treatments, and b blocks of size k , where $2 \leq k < v$.

Construction How do we choose a suitable design?

Randomization

- ▶ Randomize the order of the blocks, because they do not all have the same treatments.
- ▶ Within each block independently, randomize the order of the treatments.

Two designs with $v = 15$, $b = 7$, $k = 3$: which is better?

Conventions: columns are blocks;
order of treatments within each block is irrelevant;
order of blocks is irrelevant.

1	1	2	3	4	5	6
2	4	5	6	10	11	12
3	7	8	9	13	14	15

replications differ by ≤ 1

1	1	1	1	1	1	1
2	4	6	8	10	12	14
3	5	7	9	11	13	15

queen-bee design

Two designs with $v = 15$, $b = 7$, $k = 3$: which is better?

Conventions: columns are blocks;
order of treatments within each block is irrelevant;
order of blocks is irrelevant.

1	1	2	3	4	5	6
2	4	5	6	10	11	12
3	7	8	9	13	14	15

replications differ by ≤ 1

1	1	1	1	1	1	1
2	4	6	8	10	12	14
3	5	7	9	11	13	15

queen-bee design

The **replication** of a treatment is its number of occurrences.

A design is a **queen-bee** design if there is a treatment that occurs in every block.

Average replication $= \bar{r} = bk/v = 1.4$.

Equireplicate designs

Theorem

If every treatment is replicated r times then $vr = bk$.

Equireplicate designs

Theorem

If every treatment is replicated r times then $vr = bk$.

Proof.

Count the number of experimental units in two different ways.

Equireplicate designs

Theorem

If every treatment is replicated r times then $vr = bk$.

Proof.

Count the number of experimental units in two different ways.

Comment

Statisticians tend to prefer equireplicate designs; biologists tend to prefer queen-bee designs.

Two designs with $v = 5$, $b = 7$, $k = 3$: which is better?

1	1	1	1	2	2	2
2	3	3	4	3	3	4
3	4	5	5	4	5	5

binary

1	1	1	1	2	2	2
1	3	3	4	3	3	4
2	4	5	5	4	5	5

non-binary

Two designs with $v = 5$, $b = 7$, $k = 3$: which is better?

1	1	1	1	2	2	2
2	3	3	4	3	3	4
3	4	5	5	4	5	5

binary

1	1	1	1	2	2	2
1	3	3	4	3	3	4
2	4	5	5	4	5	5

non-binary

A design is **binary** if no treatment occurs more than once in any block.

We shall not consider any design in which there is any block having the same treatment on every plot.

Average replication $= \bar{r} = bk/v = 4.2$.

Two designs with $v = 7$, $b = 7$, $k = 3$: which is better?

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

balanced (2-design)

1	2	3	4	5	6	7
2	3	4	5	6	7	1
3	4	5	6	7	1	2

non-balanced

Two designs with $v = 7$, $b = 7$, $k = 3$: which is better?

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

balanced (2-design)

1	2	3	4	5	6	7
2	3	4	5	6	7	1
3	4	5	6	7	1	2

non-balanced

A binary design is **balanced** if every pair of distinct treatments occurs together in the same number of blocks.
(These are also called **2-designs**.)

Average replication = every replication = $\bar{r} = bk/v = 3$.

Balanced incomplete-block designs

Theorem

If a binary design is balanced, with every pair of distinct treatments occurring together in λ blocks, then the design is equireplicate and $r(k - 1) = \lambda(v - 1)$.

Balanced incomplete-block designs

Theorem

If a binary design is balanced, with every pair of distinct treatments occurring together in λ blocks, then the design is equireplicate and $r(k - 1) = \lambda(v - 1)$.

Proof.

Suppose that treatment i has replication r_i , for $i = 1, \dots, v$. The design is binary, so treatment i occurs in r_i blocks. Each of these blocks has $k - 1$ other experimental units, each with a treatment other than i . Each other treatment must occur on λ of these experimental units. There are $v - 1$ other treatments, and so

$$r_i(k - 1) = \lambda(v - 1).$$

In particular, $r_i = r = \lambda(v - 1)/(k - 1)$ for $i = 1, \dots, v$. □

Section 4

Matrix formulae.

Statistical Model

$$\begin{aligned}f(\omega) &= \text{treatment on plot } \omega \\g(\omega) &= \text{block containing plot } \omega.\end{aligned}$$

We assume that the response Y_ω on plot ω satisfies:

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega,$$

where τ_i is a constant depending on treatment i ,
 β_j is a constant depending on block j .

Some column vectors

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega.$$

When the data are collected, they are usually written in a column vector of length bk :

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_{bk} \end{pmatrix}.$$

Some column vectors

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega.$$

When the data are collected, they are usually written in a column vector of length bk :

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_{bk} \end{pmatrix}.$$

Similarly, define column vectors

$$\tau = \begin{pmatrix} \tau_1 \\ \tau_2 \\ \vdots \\ \tau_v \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_b \end{pmatrix} \quad \text{and} \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_{bk} \end{pmatrix}.$$

Some column vectors

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega.$$

When the data are collected, they are usually written in a column vector of length bk :

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_{bk} \end{pmatrix}.$$

Similarly, define column vectors

$$\tau = \begin{pmatrix} \tau_1 \\ \tau_2 \\ \vdots \\ \tau_v \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_b \end{pmatrix} \quad \text{and} \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_{bk} \end{pmatrix}.$$

(Statisticians typically use column vectors rather than row vectors.)

Expressing the model in vector form

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega.$$

Expressing the model in vector form

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega.$$

Rewritten in vector form:

$$Y = X\tau + Z\beta + \varepsilon,$$

where $X_{\omega,i} = \begin{cases} 1 & \text{if } f(\omega) = i \\ 0 & \text{otherwise,} \end{cases}$

and $Z_{\omega,j} = \begin{cases} 1 & \text{if } g(\omega) = j \\ 0 & \text{otherwise.} \end{cases}$

Expressing the model in vector form

$$Y_\omega = \tau_{f(\omega)} + \beta_{g(\omega)} + \varepsilon_\omega.$$

Rewritten in vector form:

$$Y = X\tau + Z\beta + \varepsilon,$$

where $X_{\omega,i} = \begin{cases} 1 & \text{if } f(\omega) = i \\ 0 & \text{otherwise,} \end{cases}$

and $Z_{\omega,j} = \begin{cases} 1 & \text{if } g(\omega) = j \\ 0 & \text{otherwise.} \end{cases}$

The matrix X has bk rows (labelled by the experimental units) and v columns (labelled by the treatments);
the matrix Z has bk rows (labelled by the experimental units) and b columns (labelled by the blocks).

Small example: $v = 8$, $b = 4$, $k = 3$

B1	B2	B3	B4
1	2	3	4
2	3	4	1
5	6	7	8

Small example: $v = 8$, $b = 4$, $k = 3$

	B1	B2	B3	B4
1	1	2	3	4
2	2	3	4	1
5	5	6	7	8

$$X = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Small example: $v = 8$, $b = 4$, $k = 3$

	B1	B2	B3	B4
1	1	2	3	4
2	2	3	4	1
5	5	6	7	8

$$X = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad Z = \begin{bmatrix} B1 & B2 & B3 & B4 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The 'same block' indicator matrix B

$$ZZ^\top = B,$$

where $B_{\alpha,\omega} = \begin{cases} 1 & \text{if } \alpha \text{ and } \omega \text{ are in the same block} \\ 0 & \text{otherwise.} \end{cases}$

Small example continued

	B1	B2	B3	B4
1	1	2	3	4
2	2	3	4	1
5	5	6	7	8

$$Z = \begin{bmatrix} B1 & B2 & B3 & B4 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Small example continued

	B1	B2	B3	B4
1	2	3	4	
2	3	4	1	
5	6	7	8	

$$Z = \begin{bmatrix} B1 & B2 & B3 & B4 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad B = ZZ^\top = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

More matrices

matrix	X	Z							
dimensions	$bk \times v$	$bk \times b$							

$$X_{\omega,i} = \begin{cases} 1 & \text{if } f(\omega) = i \\ 0 & \text{otherwise,} \end{cases} \quad Z_{\omega,j} = \begin{cases} 1 & \text{if } g(\omega) = j \\ 0 & \text{otherwise.} \end{cases}$$

More matrices

matrix	X	Z	B						
dimensions	$bk \times v$	$bk \times b$	$bk \times bk$						

$$X_{\omega,i} = \begin{cases} 1 & \text{if } f(\omega) = i \\ 0 & \text{otherwise,} \end{cases}$$

$$Z_{\omega,j} = \begin{cases} 1 & \text{if } g(\omega) = j \\ 0 & \text{otherwise.} \end{cases}$$

$$ZZ^\top = B$$

$$Z^\top Z = kI_b$$

More matrices

matrix	X	Z	B	R				
dimensions	$bk \times v$	$bk \times b$	$bk \times bk$	$v \times v$				

$$X_{\omega,i} = \begin{cases} 1 & \text{if } f(\omega) = i \\ 0 & \text{otherwise,} \end{cases} \quad Z_{\omega,j} = \begin{cases} 1 & \text{if } g(\omega) = j \\ 0 & \text{otherwise.} \end{cases}$$

$$ZZ^\top = B \quad Z^\top Z = kI_b$$

$$X^\top X = R = \text{diagonal matrix of treatment replications.}$$

More matrices

matrix	X	Z	B	R	N			
dimensions	$bk \times v$	$bk \times b$	$bk \times bk$	$v \times v$	$v \times b$			

$$X_{\omega,i} = \begin{cases} 1 & \text{if } f(\omega) = i \\ 0 & \text{otherwise,} \end{cases} \quad Z_{\omega,j} = \begin{cases} 1 & \text{if } g(\omega) = j \\ 0 & \text{otherwise.} \end{cases}$$

$$ZZ^\top = B \quad Z^\top Z = kI_b$$

$X^\top X = R$ = diagonal matrix of treatment replications.

$X^\top Z = N$ = **incidence** matrix.

N_{ij} = number of times that treatment i occurs in block j .

More matrices

matrix	X	Z	B	R	N	Λ		
dimensions	$bk \times v$	$bk \times b$	$bk \times bk$	$v \times v$	$v \times b$	$v \times v$		

$$X_{\omega,i} = \begin{cases} 1 & \text{if } f(\omega) = i \\ 0 & \text{otherwise,} \end{cases} \quad Z_{\omega,j} = \begin{cases} 1 & \text{if } g(\omega) = j \\ 0 & \text{otherwise.} \end{cases}$$

$$ZZ^\top = B \quad Z^\top Z = kI_b$$

$X^\top X = R$ = diagonal matrix of treatment replications.

$X^\top Z = N$ = **incidence** matrix.

N_{ij} = number of times that treatment i occurs in block j .

$NN^\top = \Lambda$ = concurrence matrix.

λ_{ij} = number of occurrences of i and j in the same block
= **concurrence** of treatments i and j .

More matrices

matrix	X	Z	B	R	N	Λ	L	
dimensions	$bk \times v$	$bk \times b$	$bk \times bk$	$v \times v$	$v \times b$	$v \times v$	$v \times v$	

$$X_{\omega,i} = \begin{cases} 1 & \text{if } f(\omega) = i \\ 0 & \text{otherwise,} \end{cases} \quad Z_{\omega,j} = \begin{cases} 1 & \text{if } g(\omega) = j \\ 0 & \text{otherwise.} \end{cases}$$

$$ZZ^\top = B \quad Z^\top Z = kI_b$$

$X^\top X = R =$ diagonal matrix of treatment replications.

$X^\top Z = N =$ **incidence** matrix.

$N_{ij} =$ number of times that treatment i occurs in block j .

$NN^\top = \Lambda =$ concurrence matrix.

$\lambda_{ij} =$ number of occurrences of i and j in the same block
 $=$ **concurrence** of treatments i and j .

$L = kR - \Lambda =$ **Laplacian** matrix;

More matrices

matrix	X	Z	B	R	N	Λ	L	C
dimensions	$bk \times v$	$bk \times b$	$bk \times bk$	$v \times v$	$v \times b$	$v \times v$	$v \times v$	$v \times v$

$$X_{\omega,i} = \begin{cases} 1 & \text{if } f(\omega) = i \\ 0 & \text{otherwise,} \end{cases} \quad Z_{\omega,j} = \begin{cases} 1 & \text{if } g(\omega) = j \\ 0 & \text{otherwise.} \end{cases}$$

$$ZZ^\top = B \quad Z^\top Z = kI_b$$

$X^\top X = R =$ diagonal matrix of treatment replications.

$X^\top Z = N =$ **incidence** matrix.

$N_{ij} =$ number of times that treatment i occurs in block j .

$NN^\top = \Lambda =$ concurrence matrix.

$\lambda_{ij} =$ number of occurrences of i and j in the same block
 $=$ **concurrence** of treatments i and j .

$L = kR - \Lambda =$ **Laplacian** matrix; $C = \frac{1}{k}L =$ **information** matrix.

Small example continued again

B1	B2	B3	B4
1	2	3	4
2	3	4	1
5	6	7	8

Small example continued again

B1	B2	B3	B4
1	2	3	4
2	3	4	1
5	6	7	8

$$Z^\top Z = 3I_4$$

Small example continued again

B1	B2	B3	B4
1	2	3	4
2	3	4	1
5	6	7	8

$$Z^\top Z = 3I_4$$

$$X^\top X = R = \begin{matrix} & \begin{matrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{matrix} \\ \begin{matrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{matrix} & \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \end{matrix}$$

Small example: incidence matrix

	B1	B2	B3	B4
1	2	3	4	
2	3	4	1	
5	6	7	8	

Small example: incidence matrix

	B1	B2	B3	B4
1	2	3	4	
2	3	4	1	
5	6	7	8	

$$N = X^T Z = \begin{matrix} & \begin{matrix} B1 & B2 & B3 & B4 \end{matrix} \\ \begin{matrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{matrix} & \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{matrix}$$

Small example: concurrence matrix

	B1	B2	B3	B4
1	2	3	4	
2	3	4	1	
5	6	7	8	

Small example: concurrence matrix

	B1	B2	B3	B4
1	2	3	4	
2	3	4	1	
5	6	7	8	

$$\Lambda = NN^\top = \begin{matrix} & \begin{matrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{matrix} \\ \begin{matrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{matrix} & \begin{bmatrix} 2 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 2 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \end{matrix}$$

Small example: Laplacian matrix

B1	B2	B3	B4
1	2	3	4
2	3	4	1
5	6	7	8

Small example: Laplacian matrix

	B1	B2	B3	B4
1	2	3	4	
2	3	4	1	
5	6	7	8	

$$L = kR - \Lambda = \begin{matrix} & \begin{matrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{matrix} \\ \begin{matrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{matrix} & \begin{bmatrix} 4 & -1 & 0 & -1 & -1 & 0 & 0 & -1 \\ -1 & 4 & -1 & 0 & -1 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ -1 & 0 & -1 & 4 & 0 & 0 & -1 & -1 \\ -1 & -1 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 & 2 & 0 \\ -1 & 0 & 0 & -1 & 0 & 0 & 0 & 2 \end{bmatrix} \end{matrix}$$

Concurrency

$$\lambda_{ij} = \sum_{m=1}^b N_{im} N_{jm}$$

= the number of ordered pairs of experimental units (α, ω) with $g(\alpha) = g(\omega)$ (same block) and $f(\alpha) = i$ and $f(\omega) = j$.

Concurrency

$$\lambda_{ij} = \sum_{m=1}^b N_{im} N_{jm}$$

= the number of ordered pairs of experimental units (α, ω) with $g(\alpha) = g(\omega)$ (same block) and $f(\alpha) = i$ and $f(\omega) = j$.

If the design is binary, then $\lambda_{ii} = r_i$ for $i = 1, \dots, v$.

Concurrency

$$\lambda_{ij} = \sum_{m=1}^b N_{im} N_{jm}$$

= the number of ordered pairs of experimental units (α, ω) with $g(\alpha) = g(\omega)$ (same block) and $f(\alpha) = i$ and $f(\omega) = j$.

If the design is binary, then $\lambda_{ii} = r_i$ for $i = 1, \dots, v$.

Counting pairs (α, ω) with $g(\alpha) = g(\omega)$ and $f(\alpha) = i$ shows that

$$r_i k = \sum_{j=1}^v \lambda_{ij} = \lambda_{ii} + \sum_{j \neq i} \lambda_{ij}.$$

Concurrency

$$\lambda_{ij} = \sum_{m=1}^b N_{im} N_{jm}$$

= the number of ordered pairs of experimental units (α, ω) with $g(\alpha) = g(\omega)$ (same block) and $f(\alpha) = i$ and $f(\omega) = j$.

If the design is binary, then $\lambda_{ii} = r_i$ for $i = 1, \dots, v$.

Counting pairs (α, ω) with $g(\alpha) = g(\omega)$ and $f(\alpha) = i$ shows that

$$r_i k = \sum_{j=1}^v \lambda_{ij} = \lambda_{ii} + \sum_{j \neq i} \lambda_{ij}.$$

$$L_{ii} = r_i k - \lambda_{ii} = \sum_{j \neq i} \lambda_{ij}$$

Concurrency

$$\lambda_{ij} = \sum_{m=1}^b N_{im} N_{jm}$$

= the number of ordered pairs of experimental units (α, ω) with $g(\alpha) = g(\omega)$ (same block) and $f(\alpha) = i$ and $f(\omega) = j$.

If the design is binary, then $\lambda_{ii} = r_i$ for $i = 1, \dots, v$.

Counting pairs (α, ω) with $g(\alpha) = g(\omega)$ and $f(\alpha) = i$ shows that

$$r_i k = \sum_{j=1}^v \lambda_{ij} = \lambda_{ii} + \sum_{j \neq i} \lambda_{ij}.$$

$$L_{ii} = r_i k - \lambda_{ii} = \sum_{j \neq i} \lambda_{ij}$$

If $j \neq i$ then $L_{ij} = -\lambda_{ij}$.

Concurrency

$$\lambda_{ij} = \sum_{m=1}^b N_{im} N_{jm}$$

= the number of ordered pairs of experimental units (α, ω) with $g(\alpha) = g(\omega)$ (same block) and $f(\alpha) = i$ and $f(\omega) = j$.

If the design is binary, then $\lambda_{ii} = r_i$ for $i = 1, \dots, v$.

Counting pairs (α, ω) with $g(\alpha) = g(\omega)$ and $f(\alpha) = i$ shows that

$$r_i k = \sum_{j=1}^v \lambda_{ij} = \lambda_{ii} + \sum_{j \neq i} \lambda_{ij}.$$

$$L_{ii} = r_i k - \lambda_{ii} = \sum_{j \neq i} \lambda_{ij}$$

If $j \neq i$ then $L_{ij} = -\lambda_{ij}$.

Theorem

The entries in each row of the Laplacian matrix sum to zero.

Fisher's Inequality

Theorem

If the design is balanced, then $b \geq v$.

Fisher's Inequality

Theorem

If the design is balanced, then $b \geq v$.

Proof.

The design is binary, so

$$\Lambda = rI_v + \lambda(J_v - I_v) = (r - \lambda) \left(I_v - \frac{J_v}{v} \right) + [\lambda(v - 1) + r] \frac{J_v}{v},$$

where I_v is the $v \times v$ identity matrix and J_v is the $v \times v$ all-1 matrix. The eigenvalues of Λ are $r - \lambda$ and $\lambda(v - 1) + r$.
But $r(k - 1) = \lambda(v - 1)$ and $k < v$ so $\lambda < r$, so $r - \lambda > 0$ and $\lambda(v - 1) + r = rk > 0$, so these eigenvalues are non-zero. Hence

$$v = \text{rank}(\Lambda) = \text{rank}(NN^\top) = \text{rank}(N^\top N) \leq b.$$

Laplacian matrices for two designs with $v = 5$, $b = 7$, $k = 3$

1	1	1	1	2	2	2
2	3	3	4	3	3	4
3	4	5	5	4	5	5

1	1	1	1	2	2	2
1	3	3	4	3	3	4
2	4	5	5	4	5	5

$$\begin{bmatrix} 8 & -1 & -3 & -2 & -2 \\ -1 & 8 & -3 & -2 & -2 \\ -3 & -3 & 10 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 8 & -2 & -2 & -2 & -2 \\ -2 & 8 & -2 & -2 & -2 \\ -2 & -2 & 8 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8 \end{bmatrix}$$

Laplacian matrices for two designs with $v = 5$, $b = 7$, $k = 3$

1	1	1	1	2	2	2
2	3	3	4	3	3	4
3	4	5	5	4	5	5

1	1	1	1	2	2	2
1	3	3	4	3	3	4
2	4	5	5	4	5	5

$$\begin{bmatrix} 8 & -1 & -3 & -2 & -2 \\ -1 & 8 & -3 & -2 & -2 \\ -3 & -3 & 10 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 8 & -2 & -2 & -2 & -2 \\ -2 & 8 & -2 & -2 & -2 \\ -2 & -2 & 8 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8 \end{bmatrix}$$

Laplacian matrices for two designs with $v = 5$, $b = 7$, $k = 3$

1	1	1	1	2	2	2
2	3	3	4	3	3	4
3	4	5	5	4	5	5

1	1	1	1	2	2	2
1	3	3	4	3	3	4
2	4	5	5	4	5	5

$$\begin{bmatrix} 8 & -1 & -3 & -2 & -2 \\ -1 & 8 & -3 & -2 & -2 \\ -3 & -3 & 10 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 8 & -2 & -2 & -2 & -2 \\ -2 & 8 & -2 & -2 & -2 \\ -2 & -2 & 8 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8 \end{bmatrix}$$

Laplacian matrices for two designs with $v = 5$, $b = 7$, $k = 3$

1	1	1	1	2	2	2
2	3	3	4	3	3	4
3	4	5	5	4	5	5

1	1	1	1	2	2	2
1	3	3	4	3	3	4
2	4	5	5	4	5	5

$$\begin{bmatrix} 8 & -1 & -3 & -2 & -2 \\ -1 & 8 & -3 & -2 & -2 \\ -3 & -3 & 10 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 8 & -2 & -2 & -2 & -2 \\ -2 & 8 & -2 & -2 & -2 \\ -2 & -2 & 8 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8 \end{bmatrix}$$

Laplacian matrices for two designs with $v = 5$, $b = 7$, $k = 3$

1	1	1	1	2	2	2
2	3	3	4	3	3	4
3	4	5	5	4	5	5

1	1	1	1	2	2	2
1	3	3	4	3	3	4
2	4	5	5	4	5	5

$$\begin{bmatrix} 8 & -1 & -3 & -2 & -2 \\ -1 & 8 & -3 & -2 & -2 \\ -3 & -3 & 10 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 8 & -2 & -2 & -2 & -2 \\ -2 & 8 & -2 & -2 & -2 \\ -2 & -2 & 8 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8 \end{bmatrix}$$

The diagonal entries make each row sum to zero.

Section 5

Constructions.

Construction: cyclic designs

This construction works if $b = v$.

Construction: cyclic designs

This construction works if $b = v$. Label the treatments by the integers modulo v . Choose an **initial** block $\{i_1, i_2, \dots, i_k\}$.

Construction: cyclic designs

This construction works if $b = v$. Label the treatments by the integers modulo v . Choose an **initial** block $\{i_1, i_2, \dots, i_k\}$.

The next block is $\{i_1 + 1, i_2 + 1, \dots, i_k + 1\}$, and so on, with all arithmetic done modulo v .

Construction: cyclic designs

This construction works if $b = v$. Label the treatments by the integers modulo v . Choose an **initial** block $\{i_1, i_2, \dots, i_k\}$.

The next block is $\{i_1 + 1, i_2 + 1, \dots, i_k + 1\}$, and so on, with all arithmetic done modulo v .

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

1	2	3	4	5	6	7
2	3	4	5	6	7	1
3	4	5	6	7	1	2

Construction: cyclic designs

This construction works if $b = v$. Label the treatments by the integers modulo v . Choose an **initial** block $\{i_1, i_2, \dots, i_k\}$.

The next block is $\{i_1 + 1, i_2 + 1, \dots, i_k + 1\}$, and so on, with all arithmetic done modulo v .

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

1	2	3	4	5	6	7
2	3	4	5	6	7	1
3	4	5	6	7	1	2

—	1	2	4
1	0	6	4
2	1	0	5
4	3	2	0

—	1	2	3
1	0	6	5
2	1	0	6
3	2	1	0

Construction: cyclic designs

This construction works if $b = v$. Label the treatments by the integers modulo v . Choose an **initial** block $\{i_1, i_2, \dots, i_k\}$.

The next block is $\{i_1 + 1, i_2 + 1, \dots, i_k + 1\}$, and so on, with all arithmetic done modulo v .

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

1	2	3	4	5	6	7
2	3	4	5	6	7	1
3	4	5	6	7	1	2

—	1	2	4
1	0	6	4
2	1	0	5
4	3	2	0

—	1	2	3
1	0	6	5
2	1	0	6
3	2	1	0

The concurrence $\lambda_{ij} =$ the number of occurrences of $i - j$ in the table of differences.

Construction: cyclic designs

This construction works if $b = v$. Label the treatments by the integers modulo v . Choose an **initial** block $\{i_1, i_2, \dots, i_k\}$.

The next block is $\{i_1 + 1, i_2 + 1, \dots, i_k + 1\}$, and so on, with all arithmetic done modulo v .

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

1	2	3	4	5	6	7
2	3	4	5	6	7	1
3	4	5	6	7	1	2

—	1	2	4
1	0	6	4
2	1	0	5
4	3	2	0

—	1	2	3
1	0	6	5
2	1	0	6
3	2	1	0

The concurrence $\lambda_{ij} =$ the number of occurrences of $i - j$ in the table of differences.

The design is balanced if every non-zero integer modulo v occurs equally often in the table of differences.

Construction: square lattice designs

This construction works if $v = k^2$.

Construction: square lattice designs

This construction works if $v = k^2$.

Write out the treatments in a $k \times k$ square.

1	2	3
4	5	6
7	8	9

Construction: square lattice designs

This construction works if $v = k^2$.

Write out the treatments in a $k \times k$ square.

1	2	3
4	5	6
7	8	9

In the 1st replicate, the rows are blocks.

1	4	7
2	5	8
3	6	9

Construction: square lattice designs

This construction works if $v = k^2$.

Write out the treatments in a $k \times k$ square.

1	2	3
4	5	6
7	8	9

In the 1st replicate, the rows are blocks.

In the 2nd replicate, the columns are blocks.

1	4	7
2	5	8
3	6	9

1	2	3
4	5	6
7	8	9

Construction: square lattice designs

This construction works if $v = k^2$.

Write out the treatments in a $k \times k$ square.

1	2	3
4	5	6
7	8	9

A	B	C
B	C	A
C	A	B

In the 1st replicate, the rows are blocks.

In the 2nd replicate, the columns are blocks.

If you want a 3rd replicate, write out a $k \times k$ Latin square and use its letters as blocks.

1	4	7
2	5	8
3	6	9

1	2	3
4	5	6
7	8	9

Construction: square lattice designs

This construction works if $v = k^2$.

Write out the treatments in a $k \times k$ square.

1	2	3
4	5	6
7	8	9

A	B	C
B	C	A
C	A	B

In the 1st replicate, the rows are blocks.

In the 2nd replicate, the columns are blocks.

If you want a 3rd replicate, write out a $k \times k$ Latin square and use its letters as blocks.

1	4	7
2	5	8
3	6	9

1	2	3
4	5	6
7	8	9

1	2	3
6	4	5
8	9	7

Construction: square lattice designs

This construction works if $v = k^2$.

Write out the treatments in a $k \times k$ square.

1	2	3
4	5	6
7	8	9

<i>A</i>	<i>B</i>	<i>C</i>
<i>B</i>	<i>C</i>	<i>A</i>
<i>C</i>	<i>A</i>	<i>B</i>

<i>A</i>	<i>B</i>	<i>C</i>
<i>C</i>	<i>A</i>	<i>B</i>
<i>B</i>	<i>C</i>	<i>A</i>

In the 1st replicate, the rows are blocks.

In the 2nd replicate, the columns are blocks.

If you want a 3rd replicate, write out a $k \times k$ Latin square and use its letters as blocks. For a 4th replicate, use a Latin square orthogonal to the first one, and so on.

1	4	7
2	5	8
3	6	9

1	2	3
4	5	6
7	8	9

1	2	3
6	4	5
8	9	7

1	2	3
5	6	4
9	7	8

Construction: square lattice designs

This construction works if $v = k^2$.

Write out the treatments in a $k \times k$ square.

1	2	3
4	5	6
7	8	9

A	B	C
B	C	A
C	A	B

A	B	C
C	A	B
B	C	A

In the 1st replicate, the rows are blocks.

In the 2nd replicate, the columns are blocks.

If you want a 3rd replicate, write out a $k \times k$ Latin square and use its letters as blocks. For a 4th replicate, use a Latin square orthogonal to the first one, and so on.

1	4	7
2	5	8
3	6	9

1	2	3
4	5	6
7	8	9

1	2	3
6	4	5
8	9	7

1	2	3
5	6	4
9	7	8

When $r = k + 1$, the design is balanced.

Construction: projective planes

This construction works if $v = b = (k - 1)^2 + k$.

Construction: projective planes

This construction works if $v = b = (k - 1)^2 + k$.

Start with a square lattice design for $(k - 1)^2$ treatments in $k(k - 1)$ blocks of size $k - 1$.

1	4	7
2	5	8
3	6	9

1	2	3
4	5	6
7	8	9

1	2	3
6	4	5
8	9	7

1	2	3
5	6	4
9	7	8

Construction: projective planes

This construction works if $v = b = (k - 1)^2 + k$.

Start with a square lattice design for $(k - 1)^2$ treatments in $k(k - 1)$ blocks of size $k - 1$.

Add a new treatment to every block in the first replicate.

1	4	7
2	5	8
3	6	9
10	10	10

1	2	3
4	5	6
7	8	9

1	2	3
6	4	5
8	9	7

1	2	3
5	6	4
9	7	8

Construction: projective planes

This construction works if $v = b = (k - 1)^2 + k$.

Start with a square lattice design for $(k - 1)^2$ treatments in $k(k - 1)$ blocks of size $k - 1$.

Add a new treatment to every block in the first replicate.
Then do the same to the other replicates.

1	4	7
2	5	8
3	6	9
10	10	10

1	2	3
4	5	6
7	8	9
11	11	11

1	2	3
6	4	5
8	9	7
12	12	12

1	2	3
5	6	4
9	7	8
13	13	13

Construction: projective planes

This construction works if $v = b = (k - 1)^2 + k$.

Start with a square lattice design for $(k - 1)^2$ treatments in $k(k - 1)$ blocks of size $k - 1$.

Add a new treatment to every block in the first replicate.
Then do the same to the other replicates.

Add an extra block containing all the new treatments.

1	4	7
2	5	8
3	6	9
10	10	10

1	2	3
4	5	6
7	8	9
11	11	11

1	2	3
6	4	5
8	9	7
12	12	12

1	2	3
5	6	4
9	7	8
13	13	13

10
11
12
13

Construction: projective planes

This construction works if $v = b = (k - 1)^2 + k$.

Start with a square lattice design for $(k - 1)^2$ treatments in $k(k - 1)$ blocks of size $k - 1$.

Add a new treatment to every block in the first replicate.
Then do the same to the other replicates.

Add an extra block containing all the new treatments.

1	4	7
2	5	8
3	6	9
10	10	10

1	2	3
4	5	6
7	8	9
11	11	11

1	2	3
6	4	5
8	9	7
12	12	12

1	2	3
5	6	4
9	7	8
13	13	13

10
11
12
13

The final design is balanced.

Partially balanced designs: I

An **association scheme** on the treatments is a partition of the set of v^2 ordered pairs of treatments into $s + 1$ associate classes, labelled $0, 1, \dots, s$, subject to some conditions.

For the m -th associate class, define the $v \times v$ matrix A_m to have (i, j) -entry equal to

$$\begin{cases} 1 & \text{if } i \text{ and } j \text{ are } m\text{-th associates} \\ 0 & \text{otherwise.} \end{cases}$$

Partially balanced designs: I

An **association scheme** on the treatments is a partition of the set of v^2 ordered pairs of treatments into $s + 1$ associate classes, labelled $0, 1, \dots, s$, subject to some conditions.

For the m -th associate class, define the $v \times v$ matrix A_m to have (i, j) -entry equal to

$$\begin{cases} 1 & \text{if } i \text{ and } j \text{ are } m\text{-th associates} \\ 0 & \text{otherwise.} \end{cases}$$

Conditions

- (i) $A_0 = I$;

Partially balanced designs: I

An **association scheme** on the treatments is a partition of the set of v^2 ordered pairs of treatments into $s + 1$ associate classes, labelled $0, 1, \dots, s$, subject to some conditions.

For the m -th associate class, define the $v \times v$ matrix A_m to have (i, j) -entry equal to

$$\begin{cases} 1 & \text{if } i \text{ and } j \text{ are } m\text{-th associates} \\ 0 & \text{otherwise.} \end{cases}$$

Conditions

- (i) $A_0 = I$;
- (ii) A_0, A_1, \dots, A_s are all symmetric;

Partially balanced designs: I

An **association scheme** on the treatments is a partition of the set of v^2 ordered pairs of treatments into $s + 1$ associate classes, labelled $0, 1, \dots, s$, subject to some conditions.

For the m -th associate class, define the $v \times v$ matrix A_m to have (i, j) -entry equal to

$$\begin{cases} 1 & \text{if } i \text{ and } j \text{ are } m\text{-th associates} \\ 0 & \text{otherwise.} \end{cases}$$

Conditions

- (i) $A_0 = I$;
- (ii) A_0, A_1, \dots, A_s are all symmetric;
- (iii) $A_0 + A_1 + \dots + A_s = J_v$;

Partially balanced designs: I

An **association scheme** on the treatments is a partition of the set of v^2 ordered pairs of treatments into $s + 1$ associate classes, labelled $0, 1, \dots, s$, subject to some conditions.

For the m -th associate class, define the $v \times v$ matrix A_m to have (i, j) -entry equal to

$$\begin{cases} 1 & \text{if } i \text{ and } j \text{ are } m\text{-th associates} \\ 0 & \text{otherwise.} \end{cases}$$

Conditions

- (i) $A_0 = I$;
- (ii) A_0, A_1, \dots, A_s are all symmetric;
- (iii) $A_0 + A_1 + \dots + A_s = J_v$;
- (iv) $A_l A_m$ is a linear combination of A_0, \dots, A_s ,
for $0 \leq l \leq s$ and $0 \leq m \leq s$.

Partially balanced designs: I

An **association scheme** on the treatments is a partition of the set of v^2 ordered pairs of treatments into $s + 1$ associate classes, labelled $0, 1, \dots, s$, subject to some conditions.

For the m -th associate class, define the $v \times v$ matrix A_m to have (i, j) -entry equal to

$$\begin{cases} 1 & \text{if } i \text{ and } j \text{ are } m\text{-th associates} \\ 0 & \text{otherwise.} \end{cases}$$

Conditions

- (i) $A_0 = I$;
- (ii) A_0, A_1, \dots, A_s are all symmetric;
- (iii) $A_0 + A_1 + \dots + A_s = J_v$;
- (iv) $A_l A_m$ is a linear combination of A_0, \dots, A_s ,
for $0 \leq l \leq s$ and $0 \leq m \leq s$.

Partially balanced designs: I

An **association scheme** on the treatments is a partition of the set of v^2 ordered pairs of treatments into $s + 1$ associate classes, labelled $0, 1, \dots, s$, subject to some conditions.

For the m -th associate class, define the $v \times v$ matrix A_m to have (i, j) -entry equal to

$$\begin{cases} 1 & \text{if } i \text{ and } j \text{ are } m\text{-th associates} \\ 0 & \text{otherwise.} \end{cases}$$

Conditions

- (i) $A_0 = I$;
- (ii) A_0, A_1, \dots, A_s are all symmetric;
- (iii) $A_0 + A_1 + \dots + A_s = J_v$;
- (iv) $A_l A_m$ is a linear combination of A_0, \dots, A_s ,
for $0 \leq l \leq s$ and $0 \leq m \leq s$.

A block design is **partially balanced** (with respect to this association scheme) if Λ is a linear combination of A_0, \dots, A_s .

Partially balanced designs: II

Cyclic designs are partially balanced with respect to the **cyclic** association scheme, which has $s = \lfloor v/2 \rfloor$.

Partially balanced designs: II

Cyclic designs are partially balanced with respect to the **cyclic** association scheme, which has $s = \lfloor v/2 \rfloor$.

Treatments i and j are m -th associates if $i - j = \pm m$ modulo v .

Partially balanced designs: II

Cyclic designs are partially balanced with respect to the **cyclic** association scheme, which has $s = \lfloor v/2 \rfloor$.

Treatments i and j are m -th associates if $i - j = \pm m$ modulo v .

Square lattice designs are partially balanced with respect to the **Latin-square-type** association scheme, which has $s = 2$.

Partially balanced designs: II

Cyclic designs are partially balanced with respect to the **cyclic** association scheme, which has $s = \lfloor v/2 \rfloor$.

Treatments i and j are m -th associates if $i - j = \pm m$ modulo v .

Square lattice designs are partially balanced with respect to the **Latin-square-type** association scheme, which has $s = 2$.

Treatments i and j are first associates if $\lambda_{ij} = 1$;
second associates otherwise.

Partially balanced designs: III

Suppose that $v = mn$ and the treatments are partitioned into m groups of size n . In the **group-divisible** association scheme, distinct treatments in the same group are first associates; treatments in different groups are second associates.

Partially balanced designs: III

Suppose that $v = mn$ and the treatments are partitioned into m groups of size n . In the **group-divisible** association scheme, distinct treatments in the same group are first associates; treatments in different groups are second associates.

Let $v = 6$, $m = 3$ and $n = 2$, with groups $\{1, 4\}$, $\{2, 5\}$ and $\{3, 6\}$. The following design with $b = 4$ and $k = 3$ is group-divisible.

1	1	2	3
2	5	4	4
3	6	6	5

Partially balanced designs: III

Suppose that $v = mn$ and the treatments are partitioned into m groups of size n . In the **group-divisible** association scheme, distinct treatments in the same group are first associates; treatments in different groups are second associates.

Let $v = 6$, $m = 3$ and $n = 2$, with groups $\{1, 4\}$, $\{2, 5\}$ and $\{3, 6\}$. The following design with $b = 4$ and $k = 3$ is group-divisible.

1	1	2	3
2	5	4	4
3	6	6	5

If treatments i and j are first associates then $\lambda_{ij} = 0$.

Partially balanced designs: III

Suppose that $v = mn$ and the treatments are partitioned into m groups of size n . In the **group-divisible** association scheme, distinct treatments in the same group are first associates; treatments in different groups are second associates.

Let $v = 6$, $m = 3$ and $n = 2$, with groups $\{1, 4\}$, $\{2, 5\}$ and $\{3, 6\}$. The following design with $b = 4$ and $k = 3$ is group-divisible.

1	1	2	3
2	5	4	4
3	6	6	5

If treatments i and j are first associates then $\lambda_{ij} = 0$.

If treatments i and j are second associates then $\lambda_{ij} = 1$.

Warnings about terminology

Balanced incomplete-block designs are the special case of partially balanced incomplete-block designs with $s = 1$.

Warnings about terminology

Balanced incomplete-block designs are the special case of partially balanced incomplete-block designs with $s = 1$.

If an incomplete-block design is not balanced then this does not imply that it is partially balanced.

Section 6

Laplacian matrix and information matrix.

Laplacian matrix and information matrix

$$B = ZZ^\top \text{ so } B^2 = ZZ^\top ZZ^\top = Z(Z^\top Z)Z^\top = Z(kI_b)Z^\top = kB.$$

Laplacian matrix and information matrix

$B = ZZ^\top$ so $B^2 = ZZ^\top ZZ^\top = Z(Z^\top Z)Z^\top = Z(kI_b)Z^\top = kB$.
Hence $\frac{1}{k}B$ is idempotent (and symmetric).

Laplacian matrix and information matrix

$B = ZZ^\top$ so $B^2 = ZZ^\top ZZ^\top = Z(Z^\top Z)Z^\top = Z(kI_b)Z^\top = kB$.
Hence $\frac{1}{k}B$ is idempotent (and symmetric). It has rank b .

Laplacian matrix and information matrix

$B = ZZ^\top$ so $B^2 = ZZ^\top ZZ^\top = Z(Z^\top Z)Z^\top = Z(kI_b)Z^\top = kB$.
Hence $\frac{1}{k}B$ is idempotent (and symmetric). It has rank b .

Put $Q = I - \frac{1}{k}B$. Then Q is also idempotent and symmetric.
It has rank $b(k - 1)$.

Laplacian matrix and information matrix

$B = ZZ^\top$ so $B^2 = ZZ^\top ZZ^\top = Z(Z^\top Z)Z^\top = Z(kI_b)Z^\top = kB$.
Hence $\frac{1}{k}B$ is idempotent (and symmetric). It has rank b .

Put $Q = I - \frac{1}{k}B$. Then Q is also idempotent and symmetric.
It has rank $b(k - 1)$.

Therefore $X^\top QX = X^\top Q^2X = X^\top Q^\top QX = (QX)^\top (QX)$,
which is non-negative definite.

Laplacian matrix and information matrix

$B = ZZ^\top$ so $B^2 = ZZ^\top ZZ^\top = Z(Z^\top Z)Z^\top = Z(kI_b)Z^\top = kB$.
Hence $\frac{1}{k}B$ is idempotent (and symmetric). It has rank b .

Put $Q = I - \frac{1}{k}B$. Then Q is also idempotent and symmetric.
It has rank $b(k - 1)$.

Therefore $X^\top QX = X^\top Q^2X = X^\top Q^\top QX = (QX)^\top (QX)$,
which is non-negative definite.

$$X^\top QX = X^\top \left(I - \frac{1}{k}B \right) X = X^\top X - \frac{1}{k} X^\top ZZ^\top X = R - \frac{1}{k} \Lambda = \frac{1}{k} L = C,$$

where L is the Laplacian matrix and C is the information matrix.

Laplacian matrix and information matrix

$B = ZZ^\top$ so $B^2 = ZZ^\top ZZ^\top = Z(Z^\top Z)Z^\top = Z(kI_b)Z^\top = kB$.
Hence $\frac{1}{k}B$ is idempotent (and symmetric). It has rank b .

Put $Q = I - \frac{1}{k}B$. Then Q is also idempotent and symmetric.
It has rank $b(k - 1)$.

Therefore $X^\top QX = X^\top Q^2X = X^\top Q^\top QX = (QX)^\top (QX)$,
which is non-negative definite.

$$X^\top QX = X^\top \left(I - \frac{1}{k}B \right) X = X^\top X - \frac{1}{k}X^\top ZZ^\top X = R - \frac{1}{k}\Lambda = \frac{1}{k}L = C,$$

where L is the Laplacian matrix and C is the information matrix.

So L and C are both non-negative definite.

Connectivity

All row-sums of L are zero,
so L has 0 as eigenvalue
on the all-1 vector.

Connectivity

All row-sums of L are zero,
so L has 0 as eigenvalue
on the all-1 vector.

The design is defined to be **connected**
if 0 is a simple eigenvalue of L .

Connectivity

All row-sums of L are zero,
so L has 0 as eigenvalue
on the all-1 vector.

The design is defined to be **connected**
if 0 is a simple eigenvalue of L .

From now on, assume connectivity.

Connectivity

All row-sums of L are zero,
so L has 0 as eigenvalue
on the all-1 vector.

The design is defined to be **connected**
if 0 is a simple eigenvalue of L .

From now on, assume connectivity.

Call the remaining eigenvalues *non-trivial*.
They are all non-negative.

Under the assumption of connectivity,
the null space of L is spanned by the all-1 vector.

The matrix $\frac{1}{v}J_v$ is the orthogonal projector onto this null space.

Generalized inverse

Under the assumption of connectivity,
the null space of L is spanned by the all-1 vector.

The matrix $\frac{1}{v}J_v$ is the orthogonal projector onto this null space.

Then the **Moore–Penrose generalized inverse** L^- of L is defined by

$$L^- = \left(L + \frac{1}{v}J_v \right)^{-1} - \frac{1}{v}J_v.$$

Section 7

Estimation and variance.

Covariance matrices in general

If

$$U = \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{pmatrix}$$

is a random vector of length n , then its variance-covariance matrix $\text{Cov}(U)$ is the $n \times n$ real symmetric matrix whose diagonal entries are the variances $\text{Var}(U_1), \dots, \text{Var}(U_n)$ and whose (i, j) -off-diagonal entry is the covariance $\text{Cov}(U_i, U_j)$. It is non-negative definite.

Covariance matrices in general

If

$$U = \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{pmatrix}$$

is a random vector of length n , then its variance-covariance matrix $\text{Cov}(U)$ is the $n \times n$ real symmetric matrix whose diagonal entries are the variances $\text{Var}(U_1), \dots, \text{Var}(U_n)$ and whose (i, j) -off-diagonal entry is the covariance $\text{Cov}(U_i, U_j)$. It is non-negative definite.

Theorem

If M is a $m \times n$ real matrix then MU is a random vector of length m and $\text{Cov}(MU) = M \text{Cov}(U)M^\top$.

Covariance matrices for our random vectors

$$Y = X\tau + Z\beta + \varepsilon.$$

Everything in $X\tau$ and $Z\beta$ is a constant, so

$$\text{Cov}(Y) = \text{Cov}(\varepsilon) = I\sigma^2.$$

Covariance matrices for our random vectors

$$Y = X\tau + Z\beta + \varepsilon.$$

Everything in $X\tau$ and $Z\beta$ is a constant, so

$$\text{Cov}(Y) = \text{Cov}(\varepsilon) = I\sigma^2.$$

(The last step was one of our initial assumptions.)

Estimation

Since $Q = I - \frac{1}{k}B$,

$$QZ = Z - \frac{1}{k}(ZZ^\top)Z = Z - \frac{1}{k}Z(kI_b) = 0.$$

Estimation

Since $Q = I - \frac{1}{k}B$,

$$QZ = Z - \frac{1}{k}(ZZ^\top)Z = Z - \frac{1}{k}Z(kI_b) = 0.$$

$$Y = X\tau + Z\beta + \varepsilon,$$

so

$$QY = QX\tau + QZ\beta + Q\varepsilon = QX\tau + Q\varepsilon,$$

and $\text{Cov}(Q\varepsilon) = Q \text{Cov}(\varepsilon) Q^\top = Q\sigma^2$, which is essentially scalar.

Estimation

Since $Q = I - \frac{1}{k}B$,

$$QZ = Z - \frac{1}{k}(ZZ^\top)Z = Z - \frac{1}{k}Z(kI_b) = 0.$$

$$Y = X\tau + Z\beta + \varepsilon,$$

so

$$QY = QX\tau + QZ\beta + Q\varepsilon = QX\tau + Q\varepsilon,$$

and $\text{Cov}(Q\varepsilon) = Q \text{Cov}(\varepsilon) Q^\top = Q\sigma^2$, which is essentially scalar.

$$(QX)^\top QY = (QX)^\top QX\tau + (QX)^\top Q\varepsilon.$$

Estimation

Since $Q = I - \frac{1}{k}B$,

$$QZ = Z - \frac{1}{k}(ZZ^\top)Z = Z - \frac{1}{k}Z(kI_b) = 0.$$

$$Y = X\tau + Z\beta + \varepsilon,$$

so

$$QY = QX\tau + QZ\beta + Q\varepsilon = QX\tau + Q\varepsilon,$$

and $\text{Cov}(Q\varepsilon) = Q \text{Cov}(\varepsilon) Q^\top = Q\sigma^2$, which is essentially scalar.

$$(QX)^\top QY = (QX)^\top QX\tau + (QX)^\top Q\varepsilon.$$

$$X^\top QY = X^\top QX\tau + X^\top Q\varepsilon = C\tau + X^\top Q\varepsilon.$$

Estimation, continued

$$X^\top QY = C\tau + X^\top Q\varepsilon.$$

Estimation, continued

$$X^\top QY = C\tau + X^\top Q\varepsilon.$$

We want to estimate **contrasts** $\sum_i x_i \tau_i$ with $\sum_i x_i = 0$.

Estimation, continued

$$X^\top QY = C\tau + X^\top Q\epsilon.$$

We want to estimate **contrasts** $\sum_i x_i \tau_i$ with $\sum_i x_i = 0$.

In particular, we want to estimate all the simple differences $\tau_i - \tau_j$.

Estimation, continued

$$X^\top QY = C\tau + X^\top Q\epsilon.$$

We want to estimate **contrasts** $\sum_i x_i \tau_i$ with $\sum_i x_i = 0$.

In particular, we want to estimate all the simple differences $\tau_i - \tau_j$.

If x is a contrast and the design is connected then there is another contrast u such that $Cu = x$. Then

$$\sum_i x_i \tau_i = x^\top \tau = u^\top C\tau.$$

Estimation, continued

$$X^\top QY = C\tau + X^\top Q\epsilon.$$

We want to estimate **contrasts** $\sum_i x_i \tau_i$ with $\sum_i x_i = 0$.

In particular, we want to estimate all the simple differences $\tau_i - \tau_j$.

If x is a contrast and the design is connected then there is another contrast u such that $Cu = x$. Then

$$\sum_i x_i \tau_i = x^\top \tau = u^\top C\tau.$$

Least squares theory shows that the best linear unbiased estimator $u^\top C\hat{\tau}$ satisfies

$$u^\top X^\top QY = u^\top C\hat{\tau}.$$

Variance of estimates of contrasts

If $Cu = x$ then

$$\sum_i x_i \hat{\tau}_i = x^\top \hat{\tau} = u^\top C \hat{\tau} = u^\top X^\top Q Y.$$

Variance of estimates of contrasts

If $Cu = x$ then

$$\sum_i x_i \hat{\tau}_i = x^\top \hat{\tau} = u^\top C \hat{\tau} = \textcolor{red}{u^\top X^\top Q Y}.$$

The variance of this estimator is

$$\textcolor{red}{u^\top X^\top Q (I\sigma^2) Q X u} = u^\top X^\top Q X u \sigma^2 = u^\top C u \sigma^2 = u^\top x \sigma^2 = x^\top C^- x \sigma^2.$$

Variance of estimates of contrasts

If $Cu = x$ then

$$\sum_i x_i \hat{\tau}_i = x^\top \hat{\tau} = u^\top C \hat{\tau} = u^\top X^\top Q Y.$$

The variance of this estimator is

$$u^\top X^\top Q (I\sigma^2) Q X u = u^\top X^\top Q X u \sigma^2 = u^\top C u \sigma^2 = u^\top x \sigma^2 = x^\top C^- x \sigma^2.$$

$$C = \frac{1}{k} L \quad \text{so} \quad C^- = k L^-,$$

so the variance is $(x^\top L^- x) k \sigma^2$.

Variance of estimates of contrasts

If $Cu = x$ then

$$\sum_i x_i \hat{\tau}_i = x^\top \hat{\tau} = u^\top C \hat{\tau} = u^\top X^\top Q Y.$$

The variance of this estimator is

$$u^\top X^\top Q (I\sigma^2) Q X u = u^\top X^\top Q X u \sigma^2 = u^\top C u \sigma^2 = u^\top x \sigma^2 = x^\top C^- x \sigma^2.$$

$$C = \frac{1}{k} L \quad \text{so} \quad C^- = k L^-,$$

so the variance is $(x^\top L^- x) k \sigma^2$.

In particular, $\text{Var}(\hat{\tau}_i - \hat{\tau}_j) = (L_{ii}^- + L_{jj}^- - 2L_{ij}^-) k \sigma^2$.

Variance of estimates of contrasts

If $Cu = x$ then

$$\sum_i x_i \hat{\tau}_i = x^\top \hat{\tau} = u^\top C \hat{\tau} = u^\top X^\top Q Y.$$

The variance of this estimator is

$$u^\top X^\top Q (I\sigma^2) Q X u = u^\top X^\top Q X u \sigma^2 = u^\top C u \sigma^2 = u^\top x \sigma^2 = x^\top C^- x \sigma^2.$$

$$C = \frac{1}{k} L \quad \text{so} \quad C^- = k L^-,$$

so the variance is $(x^\top L^- x) k \sigma^2$.

$$\text{In particular, } \text{Var}(\hat{\tau}_i - \hat{\tau}_j) = (L_{ii}^- + L_{jj}^- - 2L_{ij}^-) k \sigma^2.$$

We should like all such variances to be as small as possible.

Variance in balanced designs

In a balanced design, $r(k-1) = \lambda(v-1)$ and

$$\begin{aligned} L = krI_v - \Lambda &= krI_v - (rI_v + \lambda(J_v - I_v)) \\ &= r(k-1)I_v - \lambda(J_v - I_v) \\ &= \lambda(v-1)I_v - \lambda(J_v - I_v) \\ &= v\lambda \left(I_v - \frac{1}{v}J_v \right) \end{aligned}$$

so

$$L^- = \frac{1}{v\lambda} \left(I_v - \frac{1}{v}J_v \right)$$

and all variances of estimates of pairwise differences are the same, namely

$$\frac{2k}{v\lambda} \sigma^2 = \frac{2k(v-1)}{vr(k-1)} \sigma^2 = \frac{k(v-1)}{(k-1)v} \times \text{value in unblocked case.}$$

Variance in partially balanced designs

Variance in partially balanced designs

In a partially balanced design,

L is a linear combination of A_0, \dots, A_s ,

and the conditions for an association scheme show that

L^- is also a linear combination of A_0, \dots, A_s , so there is a single pairwise variance for all pairs in the same associate class.

Variance in partially balanced designs

In a partially balanced design,

L is a linear combination of A_0, \dots, A_s ,

and the conditions for an association scheme show that

L^- is also a linear combination of A_0, \dots, A_s , so there is a single pairwise variance for all pairs in the same associate class.

In particular, if $s = 2$ then there are precisely two concurrences and two pairwise variances, and all pairs with the same concurrence have the same pairwise variance.

Variance in partially balanced designs

In a partially balanced design,

L is a linear combination of A_0, \dots, A_s ,

and the conditions for an association scheme show that

L^- is also a linear combination of A_0, \dots, A_s , so there is a single pairwise variance for all pairs in the same associate class.

In particular, if $s = 2$ then there are precisely two concurrences and two pairwise variances, and all pairs with the same concurrence have the same pairwise variance. It can be shown that the smaller concurrence corresponds to the larger variance.

Variance in partially balanced designs

In a partially balanced design,
 L is a linear combination of A_0, \dots, A_s ,
and the conditions for an association scheme show that
 L^- is also a linear combination of A_0, \dots, A_s , so there is a single
pairwise variance for all pairs in the same associate class.

In particular, if $s = 2$ then there are precisely two concurrences
and two pairwise variances, and all pairs with the same
concurrence have the same pairwise variance. It can be shown
that the smaller concurrence corresponds to the larger variance.

Comment

Matrix inversion was not easy in the pre-computer age.
One reason for the introduction of balanced incomplete-block
designs and partially balanced incomplete-block designs was
that it was relatively easy to calculate L^- and hence to calculate
the pairwise variances.

Warnings

This simple pattern does not hold for arbitrary block designs.

In general, pairs with the same concurrence may have different pairwise variances.

There are some designs where
some pairs with low concurrence
have smaller pairwise variance than
some pairs with high concurrence.

Residuals

If the block design is connected,
then every sum $\tau_i + \beta_j$ can be estimated.

Residuals

If the block design is connected,
then every sum $\tau_i + \beta_j$ can be estimated.

Write this estimate as $\hat{\tau}_i + \hat{\beta}_j$.

Residuals

If the block design is connected,
then every sum $\tau_i + \beta_j$ can be estimated.

Write this estimate as $\hat{\tau}_i + \hat{\beta}_j$.

As before, the residual on experimental unit ω is

$$Y_\omega - \hat{\tau}_{f(\omega)} - \hat{\beta}_{g(\omega)},$$

and the residual sum of squares RSS is

$$\sum_{\omega} (Y_\omega - \hat{\tau}_{f(\omega)} - \hat{\beta}_{g(\omega)})^2.$$

Residuals

If the block design is connected,
then every sum $\tau_i + \beta_j$ can be estimated.

Write this estimate as $\hat{\tau}_i + \hat{\beta}_j$.

As before, the residual on experimental unit ω is

$$Y_\omega - \hat{\tau}_{f(\omega)} - \hat{\beta}_{g(\omega)},$$

and the residual sum of squares RSS is

$$\sum_{\omega} (Y_\omega - \hat{\tau}_{f(\omega)} - \hat{\beta}_{g(\omega)})^2.$$

Theorem

If the block design is connected then $\mathbb{E}(\text{RSS}) = (bk - b - v + 1)\sigma^2$.

Residuals

If the block design is connected,
then every sum $\tau_i + \beta_j$ can be estimated.

Write this estimate as $\hat{\tau}_i + \hat{\beta}_j$.

As before, the residual on experimental unit ω is

$$Y_\omega - \hat{\tau}_{f(\omega)} - \hat{\beta}_{g(\omega)},$$

and the residual sum of squares RSS is

$$\sum_{\omega} (Y_\omega - \hat{\tau}_{f(\omega)} - \hat{\beta}_{g(\omega)})^2.$$

Theorem

If the block design is connected then $\mathbb{E}(\text{RSS}) = (bk - b - v + 1)\sigma^2$.

Hence

$$\frac{\text{RSS}}{bk - b - v + 1}$$

is an unbiased estimator of σ^2 .

Section 8

Reparametrization.

Non-standard reparametrization of blocks

Put $\gamma_j = -\beta_j$ for $j = 1, \dots, b$. Then

$$Y_\omega = \tau_{f(\omega)} - \gamma_{g(\omega)} + \varepsilon_\omega.$$

Non-standard reparametrization of blocks

Put $\gamma_j = -\beta_j$ for $j = 1, \dots, b$. Then

$$Y_\omega = \tau_{f(\omega)} - \gamma_{g(\omega)} + \varepsilon_\omega.$$

We can add the same constant to every τ_i and every γ_j without changing the model. So we cannot estimate τ_1, \dots, τ_v .

Non-standard reparametrization of blocks

Put $\gamma_j = -\beta_j$ for $j = 1, \dots, b$. Then

$$Y_\omega = \tau_{f(\omega)} - \gamma_{g(\omega)} + \varepsilon_\omega.$$

We can add the same constant to every τ_i and every γ_j without changing the model. So we cannot estimate τ_1, \dots, τ_v .

But we can aspire to estimate differences such as $\tau_i - \tau_l$, $\gamma_j - \gamma_m$ and $\tau_i - \gamma_j$.

Non-standard reparametrization of blocks

Put $\gamma_j = -\beta_j$ for $j = 1, \dots, b$. Then

$$Y_\omega = \tau_{f(\omega)} - \gamma_{g(\omega)} + \varepsilon_\omega.$$

We can add the same constant to every τ_i and every γ_j without changing the model. So we cannot estimate τ_1, \dots, τ_v .

But we can aspire to estimate differences such as $\tau_i - \tau_l$, $\gamma_j - \gamma_m$ and $\tau_i - \gamma_j$.

In matrix form,

$$Y = X\tau - Z\gamma + \varepsilon.$$

Least squares again

$$Y = X\tau - Z\gamma + \varepsilon$$

Least squares again

$$Y = X\tau - Z\gamma + \varepsilon = [X \mid -Z] \begin{bmatrix} \tau \\ \gamma \end{bmatrix} + \varepsilon.$$

Least squares again

$$Y = X\tau - Z\gamma + \varepsilon = [X \mid -Z] \begin{bmatrix} \tau \\ \gamma \end{bmatrix} + \varepsilon.$$

The same theory as before shows that the best linear unbiased estimates of contrasts in $(\tau_1, \dots, \tau_v, \gamma_1, \dots, \gamma_b)$ satisfy

$$[X \mid -Z]^\top Y = [X \mid -Z]^\top [X \mid -Z] \begin{bmatrix} \hat{\tau} \\ \hat{\gamma} \end{bmatrix}$$

Least squares again

$$Y = X\tau - Z\gamma + \varepsilon = [X \mid -Z] \begin{bmatrix} \tau \\ \gamma \end{bmatrix} + \varepsilon.$$

The same theory as before shows that the best linear unbiased estimates of contrasts in $(\tau_1, \dots, \tau_v, \gamma_1, \dots, \gamma_b)$ satisfy

$$[X \mid -Z]^\top Y = [X \mid -Z]^\top [X \mid -Z] \begin{bmatrix} \hat{\tau} \\ \hat{\gamma} \end{bmatrix} = \tilde{L} \begin{bmatrix} \hat{\tau} \\ \hat{\gamma} \end{bmatrix},$$

where

$$\tilde{L} = \begin{bmatrix} X^\top \\ -Z^\top \end{bmatrix} [X \mid -Z] = \begin{bmatrix} X^\top X & -X^\top Z \\ -Z^\top X & Z^\top Z \end{bmatrix} = \begin{bmatrix} R & -N \\ -N^\top & kI_b \end{bmatrix}.$$

Least squares again

$$Y = X\tau - Z\gamma + \varepsilon = [X \mid -Z] \begin{bmatrix} \tau \\ \gamma \end{bmatrix} + \varepsilon.$$

The same theory as before shows that the best linear unbiased estimates of contrasts in $(\tau_1, \dots, \tau_v, \gamma_1, \dots, \gamma_b)$ satisfy

$$[X \mid -Z]^\top Y = [X \mid -Z]^\top [X \mid -Z] \begin{bmatrix} \hat{\tau} \\ \hat{\gamma} \end{bmatrix} = \tilde{L} \begin{bmatrix} \hat{\tau} \\ \hat{\gamma} \end{bmatrix},$$

where

$$\tilde{L} = \begin{bmatrix} X^\top \\ -Z^\top \end{bmatrix} [X \mid -Z] = \begin{bmatrix} X^\top X & -X^\top Z \\ -Z^\top X & Z^\top Z \end{bmatrix} = \begin{bmatrix} R & -N \\ -N^\top & kI_b \end{bmatrix}.$$

Recall that R is the diagonal matrix of treatment replications and that N is the incidence matrix.

Variance again

Now let x be a contrast vector in \mathbb{R}^{v+b} .

Variance again

Now let x be a contrast vector in \mathbb{R}^{v+b} .

If $\tilde{L}u = x$ then the best linear unbiased estimator of

$$x^\top \begin{bmatrix} \tau \\ \gamma \end{bmatrix} \quad \text{or} \quad u^\top \tilde{L} \begin{bmatrix} \tau \\ \gamma \end{bmatrix} \quad \text{is} \quad u^\top \begin{bmatrix} X^\top \\ -Z^\top \end{bmatrix} Y,$$

Variance again

Now let x be a contrast vector in \mathbb{R}^{v+b} .

If $\tilde{L}u = x$ then the best linear unbiased estimator of

$$x^\top \begin{bmatrix} \tau \\ \gamma \end{bmatrix} \quad \text{or} \quad u^\top \tilde{L} \begin{bmatrix} \tau \\ \gamma \end{bmatrix} \quad \text{is} \quad u^\top \begin{bmatrix} X^\top \\ -Z^\top \end{bmatrix} Y,$$

and the variance of this estimator is

$$(x^\top \tilde{L}^{-1} x) \sigma^2.$$

Variance again

Now let x be a contrast vector in \mathbb{R}^{v+b} .

If $\tilde{L}u = x$ then the best linear unbiased estimator of

$$x^\top \begin{bmatrix} \tau \\ \gamma \end{bmatrix} \quad \text{or} \quad u^\top \tilde{L} \begin{bmatrix} \tau \\ \gamma \end{bmatrix} \quad \text{is} \quad u^\top \begin{bmatrix} X^\top \\ -Z^\top \end{bmatrix} Y,$$

and the variance of this estimator is

$$(x^\top \tilde{L}^- x) \sigma^2.$$

In particular, $\text{Var}(\hat{\tau}_i - \hat{\tau}_j) = (\tilde{L}_{ii}^- + \tilde{L}_{jj}^- - 2\tilde{L}_{ij}^-) \sigma^2$.