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Mathematicians and statisticians

There is a very famous joke about Bose’s work in Giridh.
Professor Mahalanobis wanted Bose to visit the paddy fields
and advise him on sampling problems for the estimation of
yield of paddy. Bose did not very much like the idea,
and he used to spend most of the time at home working on
combinatorial problems using Galois fields. The workers of
the ISI used to make a joke about this. Whenever Professor
Mahalanobis asked about Bose, his secretary would say that
Bose is working in fields, which kept the Professor happy.

Bose memorial session, in Sankhyā 54 (1992)
(special issue devoted to the memory of Raj Chandra Bose;),

i–viii.

This comment refers to his years at the Indian Statistical
Institute.
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Mathematicians and statisticians

Thanks to Neill Cameron for this picture.
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Outline
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Section 1

Experiments in blocks.
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An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?
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Partition the experimental units into homogeneous blocks
and plant each variety on one plot in each block.

6/66



An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?

.......................

.....................
...................
................
..............
............. .......... ............. ................ ................... ...................... ......................... ............................ .................. ............... ............. ........... ........ .................

..................
.

.................
...

.................
.....

................
.......
..............
................

..................
.

..................
...

......................................................................................................................................................................................................................................................................
............
..............
................
...................

......................

• • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • •

STONY GROUND

..................
.............
.................
................

......................
...............
...........
..........
..............................................

..................
.................

................
.........................................

................. ........ ........................................................................................................................

.................
...............
..............

..........
..........................

..............
..................
...............................................

...................................................................
.......... ..... ..... ....................................

..................
.......... ..........................................................................

.......... ..... .................................................................... ........ ...............................................

Partition the experimental units into homogeneous blocks
and plant each variety on one plot in each block.

6/66



An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?

.......................

.....................
...................
................
..............
............. .......... ............. ................ ................... ...................... ......................... ............................ .................. ............... ............. ........... ........ .................

..................
.

.................
...

.................
.....

................
.......
..............
................

..................
.

..................
...

......................................................................................................................................................................................................................................................................
............
..............
................
...................

......................

• • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • •

STONY GROUND

..................
.............
.................
................

......................
...............
...........
..........
..............................................

..................
.................

................
.........................................

................. ........ ........................................................................................................................

.................
...............
..............

..........
..........................

..............
..................
...............................................

...................................................................
.......... ..... ..... ....................................

..................
.......... ..........................................................................

.......... ..... .................................................................... ........ ...............................................

Partition the experimental units into homogeneous blocks
and plant each variety on one plot in each block.

6/66



An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?

.......................

.....................
...................
................
..............
............. .......... ............. ................ ................... ...................... ......................... ............................ .................. ............... ............. ........... ........ .................

..................
.

.................
...

.................
.....

................
.......
..............
................

..................
.

..................
...

......................................................................................................................................................................................................................................................................
............
..............
................
...................

......................

• • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • •

STONY GROUND

..................
.............
.................
................

......................
...............
...........
..........
..............................................

..................
.................

................
.........................................

................. ........ ........................................................................................................................

.................
...............
..............

..........
..........................

..............
..................
...............................................

...................................................................
.......... ..... ..... ....................................

..................
.......... ..........................................................................

.......... ..... .................................................................... ........ ...............................................

Partition the experimental units into homogeneous blocks
and plant each variety on one plot in each block.

6/66



An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?

.......................

.....................
...................
................
..............
............. .......... ............. ................ ................... ...................... ......................... ............................ .................. ............... ............. ........... ........ .................

..................
.

.................
...

.................
.....

................
.......
..............
................

..................
.

..................
...

......................................................................................................................................................................................................................................................................
............
..............
................
...................

......................

• • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • •

STONY GROUND

..................
.............
.................
................

......................
...............
...........
..........
..............................................

..................
.................

................
.........................................

................. ........ ........................................................................................................................

.................
...............
..............

..........
..........................

..............
..................
...............................................

...................................................................
.......... ..... ..... ....................................

..................
.......... ..........................................................................

.......... ..... .................................................................... ........ ...............................................

Partition the experimental units into homogeneous blocks
and plant each variety on one plot in each block.

6/66



An experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?

.......................

.....................
...................
................
..............
............. .......... ............. ................ ................... ...................... ......................... ............................ .................. ............... ............. ........... ........ .................

..................
.

.................
...

.................
.....

................
.......
..............
................

..................
.

..................
...

......................................................................................................................................................................................................................................................................
............
..............
................
...................

......................

• • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • •

STONY GROUND

..................
.............
.................
................

......................
...............
...........
..........
..............................................

..................
.................

................
.........................................

................. ........ ........................................................................................................................

.................
...............
..............

..........
..........................

..............
..................
...............................................

...................................................................
.......... ..... ..... ....................................

..................
.......... ..........................................................................

.......... ..... .................................................................... ........ ...............................................

Partition the experimental units into homogeneous blocks
and plant each variety on one plot in each block.

6/66



An experiment on people

Several studies have suggested that drinking red wine gives
some protection against heart disease, but it is not known
whether the effect is caused by the alcohol or by some other
ingredient of red wine. To investigate this, medical scientists
enrolled 40 volunteers into a trial lasting 28 days.

For the first 14 days, half the volunteers drank two glasses of
red wine per day, while the other half had two standard drinks
of gin. For the remaining 14 days the drinks were reversed:
those who had been drinking red wine changed to gin, while
those who had been drinking gin changed to red wine.
On days 14 and 28,
the scientists took a blood sample from each volunteer and
measured the amount of inflammatory substance in the blood.

Each experimental unit consists of one volunteer for 14 days.
So there are 80 experimental units.
Each volunteer forms a block of size 2.

The treatments are the 2 types of drink.
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An experiment on diffusion of proteins

A post-doc added from 0 to 4 extra green fluorescent proteins
to cells of Escherichia coli, adding 0 to each of 10 cells, 1 to each
of 10 further cells, and so on. Then she measured the rate of
diffusion of proteins in each of the 50 cells.

This is what she did.

Monday Tuesday Wednesday Thursday Friday
0000000000 1111111111 2222222222 3333333333 4444444444

Are the perceived differences caused by differences in size?

Did she get better at preparing the samples as the week wore
on?

Were there environmental changes in the lab that could have
contributed to the differences?
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Diffusion of proteins: continued

What she did.

Monday Tuesday Wednesday Thursday Friday
0000000000 1111111111 2222222222 3333333333 4444444444

Better to regard each day as a block.

Monday Tuesday Wednesday Thursday Friday
0011223344 0011223344 0011223344 0011223344 0011223344

There may still be systematic differences within each day,
so—better still—randomize within each day.

Monday Tuesday Wednesday Thursday Friday
1040223134 2230110443 1421324030 4420013312 3204320411
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An experiment on detergents

In a consumer experiment, twelve housewives volunteer to test
new detergents. (This was 40 years ago, when most
homemakers in the UK were female.) There are 16 new
detergents to compare, but it is not realistic to ask any one
volunteer to compare this many detergents.
Each housewife tests one detergent per washload for each of
four washloads, and assesses the cleanliness of each washload.

The experimental units are the washloads.
The housewives form 12 blocks of size 4.

The treatments are the 16 new detergents.
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Experiments in blocks

I have v treatments that I want to compare.
I have b blocks, with k plots in each block.

blocks b k treatments v
contiguous plots 4 6 cabbage varieties 6

volunteers 40 2 drinks 2
days 5 10 numbers of cells 5

housewives 12 4 detergents 16

How should I choose a block design?
How should I randomize it?
How should I analyse the data after the experiment?
What makes a block design good?
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Section 2

Complete-block designs.
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Complete-block designs: construction and randomization

For a complete-block design,
there are v treatments, and b blocks of size v.

Construction Each treatment occurs on one plot per block.
Randomization Within each block independently,

randomize the order of the treatments.
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Statistical Model

Let f (ω) = treatment on plot ω

g(ω) = block containing plot ω.

We assume that the response Yω on plot ω satisfies:

Yω = τf (ω) + βg(ω) + εω,

where τi is a constant depending on treatment i,
βj is a constant depending on block j,

and the εω are independent (normal) random variables with
zero mean and variance σ2.

We can replace τi and βj by τi + c and βj − c without changing
the model. So we cannot estimate τ1, . . . , τv.

But we can estimate treatment differences τi − τl,
and we can estimate sums τi + βj.
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Estimating treatment differences

Yω = τf (ω) + βg(ω) + εω

An estimator for τ1 − τ2 is

I best if it has minimum variance subject to the other
conditions;

I linear if it is a linear combination of Y1, Y2, . . . , Ybk;
I unbiased if its expectation is equal to τ1 − τ2.

For a complete-block design,
the best linear unbiased estimator (often abbreviated to BLUE)
of τ1 − τ2 is

(average response on treatment 1)− (average response on treatment 2).

The variance of this estimator is
2σ2

b
.
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Residuals

For a complete-block design,
the best linear unbiased estimator of τi + βj is

(average response on treatment i) + (average response on block j)
−(average response overall).

Write this as τ̂i + β̂j.

The residual on experimental unit ω is

Yω − τ̂f (ω) − β̂g(ω).

The residual sum of squares RSS = ∑ω(Yω − τ̂f (ω) − β̂g(ω))
2 =

∑
ω

Y2
ω−

v

∑
i=1

(total on treatment i)2

b
−

b

∑
j=1

(total on block j)2

v
+

(∑
ω

Yω)
2

bk
.
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Yω − τ̂f (ω) − β̂g(ω).

The residual sum of squares RSS = ∑ω(Yω − τ̂f (ω) − β̂g(ω))
2 =

∑
ω

Y2
ω−

v

∑
i=1

(total on treatment i)2

b
−

b
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Estimating variance

Theorem
E(RSS) = (b− 1)(v− 1)σ2.

Hence
RSS

(b− 1)(v− 1)

is an unbiased estimator of σ2.
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Comments

1. We are not usually interested in the block parameters βj.

2. If k = vs and each treatment occurs s times in each block,
then estimation is similar.
Then the variance of the best linear unbiased estimator of
τi − τj is

2σ2

bs
.

3. In particular, if there is a single block and each treatment
occurs r times then the variance of the best linear unbiased
estimator of τi − τj is

2σ2

r
.
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Section 3

Incomplete-block designs.
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Incomplete-block designs

For an incomplete-block design,
there are v treatments, and b blocks of size k, where 2 ≤ k < v.

Construction How do we choose a suitable design?
Randomization I Randomize the order of the blocks, because

they do not all have the same treatments.
I Within each block independently,

randomize the order of the treatments.
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Two designs with v = 15, b = 7, k = 3: which is better?

Conventions: columns are blocks;
order of treatments within each block is irrelevant;
order of blocks is irrelevant.

1 1 2 3 4 5 6
2 4 5 6 10 11 12
3 7 8 9 13 14 15

1 1 1 1 1 1 1
2 4 6 8 10 12 14
3 5 7 9 11 13 15

replications differ by ≤ 1 queen-bee design

The replication of a treatment is its number of occurrences.

A design is a queen-bee design if there is a treatment that
occurs in every block.

Average replication = r̄ = bk/v = 1.4.
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Equireplicate designs

Theorem
If every treatment is replicated r times then vr = bk.

Proof.
Count the number of experimental units in two different
ways.

Comment
Statisticians tend to prefer equireplicate designs; biologists tend
to prefer queen-bee designs.
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Two designs with v = 5, b = 7, k = 3: which is better?

1 1 1 1 2 2 2
2 3 3 4 3 3 4
3 4 5 5 4 5 5

1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5

binary non-binary

A design is binary if no treatment occurs more than once in any
block.

We shall not consider any design in which there is any block
having the same treatment on every plot.

Average replication = r̄ = bk/v = 4.2.
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Two designs with v = 7, b = 7, k = 3: which is better?

1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2

balanced (2-design) non-balanced

A binary design is balanced if every pair of distinct treatments
occurs together in the same number of blocks.
(These are also called 2-designs.)

Average replication = every replication = r̄ = bk/v = 3.
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Balanced incomplete-block designs

Theorem
If a binary design is balanced, with every pair of distinct treatments
occuring together in λ blocks, then the design is equireplicate and
r(k− 1) = λ(v− 1).

Proof.
Suppose that treatment i has replication ri, for i = 1, . . . , v. The
design is binary, so treatment i occurs in ri blocks. Each of these
blocks has k− 1 other experimental units, each with a treatment
other than i. Each other treatment must occur on λ of these
experimental units. There are v− 1 other treatments, and so

ri(k− 1) = λ(v− 1).

In particular, ri = r = λ(v− 1)/(k− 1) for i = 1, . . . , v.
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Section 4

Matrix formulae.

26/66



Statistical Model

f (ω) = treatment on plot ω

g(ω) = block containing plot ω.

We assume that the response Yω on plot ω satisfies:

Yω = τf (ω) + βg(ω) + εω,

where τi is a constant depending on treatment i,
βj is a constant depending on block j.
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Some column vectors

Yω = τf (ω) + βg(ω) + εω.

When the data are collected, they are usually written in a
column vector of length bk:

Y =


Y1
Y2
...

Ybk

 .

Similarly, define column vectors

τ =


τ1
τ2
...

τv

 and β =


β1
β2
...

βb

 and ε =


ε1
ε2
...

εbk

 .

(Statisticians typically use column vectors rather than row
vectors.)
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Expressing the model in vector form

Yω = τf (ω) + βg(ω) + εω.

Rewritten in vector form:

Y = Xτ + Zβ + ε,

where Xω,i =

{
1 if f (ω) = i
0 otherwise,

and Zω,j =

{
1 if g(ω) = j
0 otherwise.

The matrix X has bk rows (labelled by the experimental units)
and v columns (labelled by the treatments);
the matrix Z has bk rows (labelled by the experimental units)
and b columns (labelled by the blocks).
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Small example: v = 8, b = 4, k = 3

B1 B2 B3 B4
1 2 3 4
2 3 4 1
5 6 7 8

X =

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1



Z =

B1 B2 B3 B4

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1


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The ‘same block’ indicator matrix B

ZZ> = B,

where Bα,ω =

{
1 if α and ω are in the same block
0 otherwise.
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Small example continued

B1 B2 B3 B4
1 2 3 4
2 3 4 1
5 6 7 8

Z =

B1 B2 B3 B4

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1



B = ZZ> =



1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1


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Small example continued

B1 B2 B3 B4
1 2 3 4
2 3 4 1
5 6 7 8

Z =
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1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1


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More matrices

matrix X Z

B R N Λ L C

dimensions bk× v bk× b

bk× bk v× v v× b v× v v× v v× v

Xω,i =

{
1 if f (ω) = i
0 otherwise,

Zω,j =

{
1 if g(ω) = j
0 otherwise.

ZZ> = B Z>Z = kIb

X>X = R = diagonal matrix of treatment replications.

X>Z = N = incidence matrix.

Nij = number of times that treatment i occurs in block j.

NN> = Λ = concurrence matrix.

λij = number of occurrences of i and j in the same block
= concurrence of treatments i and j.

L = kR−Λ = Laplacian matrix; C =
1
k

L = information matrix.
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λij = number of occurrences of i and j in the same block
= concurrence of treatments i and j.

L = kR−Λ = Laplacian matrix;

C =
1
k

L = information matrix.
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1
k
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Small example continued again

B1 B2 B3 B4
1 2 3 4
2 3 4 1
5 6 7 8

Z>Z = 3I4

X>X = R =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8



2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



34/66



Small example continued again

B1 B2 B3 B4
1 2 3 4
2 3 4 1
5 6 7 8

Z>Z = 3I4

X>X = R =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8



2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



34/66



Small example continued again

B1 B2 B3 B4
1 2 3 4
2 3 4 1
5 6 7 8

Z>Z = 3I4

X>X = R =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8



2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


34/66



Small example: incidence matrix

B1 B2 B3 B4
1 2 3 4
2 3 4 1
5 6 7 8

N = X>Z =

B1 B2 B3 B4
1
2
3
4
5
6
7
8



1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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Small example: concurrence matrix

B1 B2 B3 B4
1 2 3 4
2 3 4 1
5 6 7 8

Λ = NN> =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8



2 1 0 1 1 0 0 1
1 2 1 0 1 1 0 0
0 1 2 1 0 1 1 0
1 0 1 2 0 0 1 1
1 1 0 0 1 0 0 0
0 1 1 0 0 1 0 0
0 0 1 1 0 0 1 0
1 0 0 1 0 0 0 1


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Small example: Laplacian matrix

B1 B2 B3 B4
1 2 3 4
2 3 4 1
5 6 7 8

L = kR−Λ =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8



4 −1 0 −1 −1 0 0 −1
−1 4 −1 0 −1 −1 0 0

0 −1 4 −1 0 −1 −1 0
−1 0 −1 4 0 0 −1 −1
−1 −1 0 0 2 0 0 0

0 −1 −1 0 0 2 0 0
0 0 −1 −1 0 0 2 0
−1 0 0 −1 0 0 0 2


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Small example: Laplacian matrix

B1 B2 B3 B4
1 2 3 4
2 3 4 1
5 6 7 8
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1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
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0 0 −1 −1 0 0 2 0
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Concurrence

λij =
b

∑
m=1

NimNjm

= the number of ordered pairs of experimental units (α, ω)
with g(α) = g(ω) (same block) and f (α) = i and f (ω) = j.

If the design is binary, then λii = ri for i = 1, . . . , v.

Counting pairs (α, ω) with g(α) = g(ω) and f (α) = i shows that

rik =
v

∑
j=1

λij = λii + ∑
j 6=i

λij.

Lii = rik− λii = ∑
j 6=i

λij

If j 6= i then Lij = −λij.

Theorem
The entries in each row of the Laplacian matrix sum to zero.

38/66



Concurrence

λij =
b

∑
m=1

NimNjm

= the number of ordered pairs of experimental units (α, ω)
with g(α) = g(ω) (same block) and f (α) = i and f (ω) = j.

If the design is binary, then λii = ri for i = 1, . . . , v.

Counting pairs (α, ω) with g(α) = g(ω) and f (α) = i shows that

rik =
v

∑
j=1

λij = λii + ∑
j 6=i

λij.

Lii = rik− λii = ∑
j 6=i

λij

If j 6= i then Lij = −λij.

Theorem
The entries in each row of the Laplacian matrix sum to zero.

38/66



Concurrence

λij =
b

∑
m=1

NimNjm

= the number of ordered pairs of experimental units (α, ω)
with g(α) = g(ω) (same block) and f (α) = i and f (ω) = j.

If the design is binary, then λii = ri for i = 1, . . . , v.

Counting pairs (α, ω) with g(α) = g(ω) and f (α) = i shows that

rik =
v

∑
j=1

λij = λii + ∑
j 6=i

λij.

Lii = rik− λii = ∑
j 6=i

λij

If j 6= i then Lij = −λij.

Theorem
The entries in each row of the Laplacian matrix sum to zero.

38/66



Concurrence

λij =
b

∑
m=1

NimNjm

= the number of ordered pairs of experimental units (α, ω)
with g(α) = g(ω) (same block) and f (α) = i and f (ω) = j.

If the design is binary, then λii = ri for i = 1, . . . , v.

Counting pairs (α, ω) with g(α) = g(ω) and f (α) = i shows that

rik =
v

∑
j=1

λij = λii + ∑
j 6=i

λij.

Lii = rik− λii = ∑
j 6=i

λij

If j 6= i then Lij = −λij.

Theorem
The entries in each row of the Laplacian matrix sum to zero.

38/66



Concurrence

λij =
b

∑
m=1

NimNjm

= the number of ordered pairs of experimental units (α, ω)
with g(α) = g(ω) (same block) and f (α) = i and f (ω) = j.

If the design is binary, then λii = ri for i = 1, . . . , v.

Counting pairs (α, ω) with g(α) = g(ω) and f (α) = i shows that

rik =
v

∑
j=1

λij = λii + ∑
j 6=i

λij.

Lii = rik− λii = ∑
j 6=i

λij

If j 6= i then Lij = −λij.

Theorem
The entries in each row of the Laplacian matrix sum to zero.

38/66



Concurrence

λij =
b

∑
m=1

NimNjm

= the number of ordered pairs of experimental units (α, ω)
with g(α) = g(ω) (same block) and f (α) = i and f (ω) = j.

If the design is binary, then λii = ri for i = 1, . . . , v.

Counting pairs (α, ω) with g(α) = g(ω) and f (α) = i shows that

rik =
v

∑
j=1

λij = λii + ∑
j 6=i

λij.

Lii = rik− λii = ∑
j 6=i

λij

If j 6= i then Lij = −λij.

Theorem
The entries in each row of the Laplacian matrix sum to zero.

38/66



Fisher’s Inequality

Theorem
If the design is balanced, then b ≥ v.

Proof.
The design is binary, so

Λ = rIv + λ(Jv − Iv) = (r− λ)

(
Iv −

Jv

v

)
+ [λ(v− 1) + r]

Jv

v
,

where Iv is the v× v identity matrix and Jv is the v× v all-1
matrix. The eigenvalues of Λ are r− λ and λ(v− 1) + r.
But r(k− 1) = λ(v− 1) and k < v so λ < r, so r− λ > 0 and
λ(v− 1) + r = rk > 0, so these eigenvalues are non-zero. Hence

v = rank(Λ) = rank(NN>) = rank(N>N) ≤ b.
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Laplacian matrices for two designs with v = 5, b = 7,
k = 3

1 1 1 1 2 2 2
2 3 3 4 3 3 4
3 4 5 5 4 5 5

1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5


8 −1 −3 −2 −2
−1 8 −3 −2 −2
−3 −3 10 −2 −2
−2 −2 −2 8 −2
−2 −2 −2 −2 8




8 −2 −2 −2 −2
−2 8 −2 −2 −2
−2 −2 8 −2 −2
−2 −2 −2 8 −2
−2 −2 −2 −2 8



The diagonal entries make each row sum to zero.
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Section 5

Constructions.
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Construction: cyclic designs

This construction works if b = v.

Label the treatments by the
integers modulo v. Choose an initial block {i1, i2, . . . , ik}.
The next block is {i1 + 1, i2 + 1, . . . , ik + 1}, and so on,
with all arithmetic done modulo v.

1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2

− 1 2 4
1 0 6 4
2 1 0 5
4 3 2 0

− 1 2 3
1 0 6 5
2 1 0 6
3 2 1 0

The concurrence λij = the number of occurrences of i− j in the
table of differences.
The design is balanced if every non-zero integer modulo v
occurs equally often in the table of differences.
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Construction: square lattice designs

This construction works if v = k2.

Write out the treatments in a k× k square.

1 2 3
4 5 6
7 8 9

A B C
B C A
C A B

A B C
C A B
B C A

In the 1st replicate, the rows are blocks.

In the 2nd replicate, the columns are blocks.
If you want a 3rd replicate, write out a k× k Latin square and
use its letters as blocks. For a 4th replicate, use a Latin square
orthogonal to the first one, and so on.

1 4 7
2 5 8
3 6 9

1 2 3
4 5 6
7 8 9

1 2 3
6 4 5
8 9 7

1 2 3
5 6 4
9 7 8

When r = k + 1, the design is balanced.
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Construction: projective planes

This construction works if v = b = (k− 1)2 + k.

Start with a square lattice design for (k− 1)2 treatments in
k(k− 1) blocks of size k− 1.

Add a new treatment to every block in the first replicate.
Then do the same to the other replicates.
Add an extra block containing all the new treatments.

1 4 7
2 5 8
3 6 9

10 10 10

1 2 3
4 5 6
7 8 9

11 11 11

1 2 3
6 4 5
8 9 7

12 12 12

1 2 3
5 6 4
9 7 8

13 13 13

10
11
12
13

The final design is balanced.
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Partially balanced designs: I

An association scheme on the treatments is a partition of the set
of v2 ordered pairs of treatments into s + 1 associate classes,
labelled 0, 1, . . . , s, subject to some conditions.
For the m-th associate class, define the v× v matrix Am to have
(i, j)-entry equal to{

1 if i and j are m-th associates
0 otherwise.

Conditions

(i) A0 = I;
(ii) A0, A1, . . . , As are all symmetric;
(iii) A0 + A1 + · · ·+ As = Jv;
(iv) AlAm is a linear combination of A0, . . . , As,

for 0 ≤ l ≤ s and 0 ≤ m ≤ s.

A block design is partially balanced (with respect to this
association scheme) if Λ is a linear combination of A0, . . . , As.
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Partially balanced designs: II

Cyclic designs are partially balanced with respect to the cyclic
association scheme, which has s = bv/2c.

Treatments i and j are m-th associates if i− j = ±m modulo v.

Square lattice designs are partially balanced with respect to the
Latin-square-type association scheme, which has s = 2.

Treatments i and j are first associates if λij = 1;
second associates otherwise.
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Partially balanced designs: III

Suppose that v = mn and the treatments are partitioned into
m groups of size n. In the group-divisible association scheme,
distinct treatments in the same group are first associates;
treatments in different groups are second associates.

Let v = 6, m = 3 and n = 2, with groups {1, 4}, {2, 5} and
{3, 6}. The following design with b = 4 and k = 3 is
group-divisible.

1 1 2 3
2 5 4 4
3 6 6 5

If treatments i and j are first associates then λij = 0.

If treatments i and j are second associates then λij = 1.
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Warnings about terminology

Balanced incomplete-block designs are the special case of
partially balanced incomplete-block designs with s = 1.

If an incomplete-block design is not balanced
then this does not imply that it is partially balanced.
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Section 6

Laplacian matrix and information matrix.
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Laplacian matrix and information matrix

B = ZZ> so B2 = ZZ>ZZ> = Z(Z>Z)Z> = Z(kIb)Z> = kB.

Hence 1
k B is idempotent (and symmetric). It has rank b.

Put Q = I− 1
k B. Then Q is also idempotent and symmetric.

It has rank b(k− 1).

Therefore X>QX = X>Q2X = X>Q>QX = (QX)>(QX),
which is non-negative definite.

X>QX = X>
(

I− 1
k

B
)

X = X>X− 1
k

X>ZZ>X = R− 1
k

Λ =
1
k

L = C,

where L is the Laplacian matrix and C is the information matrix.

So L and C are both non-negative definite.
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Connectivity

All row-sums of L are zero,
so L has 0 as eigenvalue
on the all-1 vector.

The design is defined to be connected
if 0 is a simple eigenvalue of L.

From now on, assume connectivity.

Call the remaining eigenvalues non-trivial.
They are all non-negative.
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Generalized inverse

Under the assumption of connectivity,
the null space of L is spanned by the all-1 vector.

The matrix
1
v

Jv is the orthogonal projector onto this null space.

Then the Moore–Penrose generalized inverse L− of L is defined
by

L− =

(
L +

1
v

Jv

)−1

− 1
v

Jv.
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Section 7

Estimation and variance.
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Covariance matrices in general

If

U =


U1
U2
...

Un


is a random vector of length n, then its variance-covariance
matrix Cov(U) is the n× n real symmetric matrix whose
diagonal entries are the variances Var(U1), . . . , Var(Un) and
whose (i, j)-off-diagonal entry is the covariance Cov(Ui, Uj).
It is non-negative definite.

Theorem
If M is a m× n real matrix then MU is a random vector of length m
and Cov(MU) = M Cov(U)M>.
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Covariance matrices for our random vectors

Y = Xτ + Zβ + ε.

Everything in Xτ and Zβ is a constant, so

Cov(Y) = Cov(ε) = Iσ2.

(The last step was one of our initial assumptions.)
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Estimation

Since Q = I− 1
k B,

QZ = Z− 1
k
(ZZ>)Z = Z− 1

k
Z(kIb) = 0.

Y = Xτ + Zβ + ε,

so
QY = QXτ + QZβ + Qε = QXτ + Qε,

and Cov(Qε) = Q Cov(ε)Q> = Qσ2, which is essentially scalar.

(QX)>QY = (QX)>QXτ + (QX)>Qε.

X>QY = X>QXτ + X>Qε = Cτ + X>Qε.
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X>QY = X>QXτ + X>Qε = Cτ + X>Qε.
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Estimation, continued

X>QY = Cτ + X>Qε.

We want to estimate contrasts ∑i xiτi with ∑i xi = 0.

In particular, we want to estimate all the simple differences
τi − τj.

If x is a contrast and the design is connected then there is
another contrast u such that Cu = x. Then

∑
i

xiτi = x>τ = u>Cτ.

Least squares theory shows that the best linear unbiased
estimator u>Cτ̂ satisfies

u>X>QY = u>Cτ̂.
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Variance of estimates of contrasts

If Cu = x then

∑
i

xiτ̂i = x>τ̂ = u>Cτ̂ = u>X>QY.

The variance of this estimator is

u>X>Q(Iσ2)QXu = u>X>QXuσ2 = u>Cuσ2 = u>xσ2 = x>C−xσ2.

C =
1
k

L so C− = kL−,

so the variance is (x>L−x)kσ2.

In particular, Var(τ̂i − τ̂j) = (L−ii + L−jj − 2L−ij )kσ2.

We should like all such variances to be as small as possible.
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Variance in balanced designs

In a balanced design, r(k− 1) = λ(v− 1) and

L = krIv −Λ = krIv − (rIv + λ(Jv − Iv))

= r(k− 1)Iv − λ(Jv − Iv)

= λ(v− 1)Iv − λ(Jv − Iv)

= vλ

(
Iv −

1
v

Jv

)
so

L− =
1

vλ

(
Iv −

1
v

Jv

)
and all variances of estimates of pairwise differences are the
same, namely

2k
vλ

σ2 =
2k(v− 1)
vr(k− 1)

σ2 =
k(v− 1)
(k− 1)v

× value in unblocked case.
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Variance in partially balanced designs

In a partially balanced design,
L is a linear combination of A0, . . . , As,
and the conditions for an association scheme show that
L− is also a linear combination of A0, . . . , As, so there is a single
pairwise variance for all pairs in the same associate class.

In particular, if s = 2 then there are precisely two concurrences
and two pairwise variances, and all pairs with the same
concurrence have the same pairwise variance. It can be shown
that the smaller concurrence corresponds to the larger variance.

Comment
Matrix inversion was not easy in the pre-computer age.
One reason for the introduction of balanced incomplete-block
designs and partially balanced incomplete-block designs was
that it was relatively easy to calculate L− and hence to calculate
the pairwise variances.
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Warnings

This simple pattern does not hold for arbitrary block designs.

In general, pairs with the same concurrence may have different
pairwise variances.

There are some designs where
some pairs with low concurrence
have smaller pairwise variance than
some pairs with high concurrence.
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Residuals

If the block design is connected,
then every sum τi + βj can be estimated.

Write this estimate as τ̂i + β̂j.

As before, the residual on experimental unit ω is

Yω − τ̂f (ω) − β̂g(ω),

and the residual sum of squares RSS is

∑
ω

(Yω − τ̂f (ω) − β̂g(ω))
2.

Theorem
If the block design is connected then E(RSS) = (bk− b− v + 1)σ2.

Hence
RSS

bk− b− v + 1
is an unbiased estimator of σ2.
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Section 8

Reparametrization.
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Non-standard reparametrization of blocks

Put γj = −βj for j = 1, . . . , b. Then

Yω = τf (ω) − γg(ω) + εω.

We can add the same constant to every τi and every γj without
changing the model. So we cannot estimate τ1, . . . , τv.

But we can aspire to estimate differences such as τi − τl, γj − γm
and τi − γj.

In matrix form,
Y = Xτ − Zγ + ε.
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Least squares again

Y = Xτ − Zγ + ε

= [X | −Z]
[

τ
γ

]
+ ε.

The same theory as before shows that the best linear unbiased
estimates of contrasts in (τ1, . . . , τv, γ1, . . . , γb) satisfy

[X | −Z]>Y = [X | −Z]>[X | −Z]
[

τ̂
γ̂

]
= L̃

[
τ̂
γ̂

]
,

where

L̃ =

[
X>

−Z>

]
[X | −Z] =

[
X>X −X>Z
−Z>X Z>Z

]
=

[
R −N
−N> kIb

]
.

Recall that R is the diagonal matrix of treatment replications
and that N is the incidence matrix.
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Variance again

Now let x be a contrast vector in Rv+b.

If L̃u = x then the best linear unbiased estimator of

x>
[

τ
γ

]
or u>L̃

[
τ
γ

]
is u>

[
X>

−Z>

]
Y,

and the variance of this estimator is

(x>L̃−x)σ2.

In particular, Var(τ̂i − τ̂j) = (L̃−ii + L̃−jj − 2L̃−ij )σ
2.
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