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The Laplacian of a graph

This lecture will be about the Laplacian matrix of a graph and
its eigenvalues, and their relation to some graph parameters.

This is not a complete account of the theory, but concentrates
mainly on the things that are most relevant for experimental
design.
For further reading, we recommend
I B. Bollobás, Modern Graph Theory, Springer, (especially

chapters II and IX)
I B. Mohar, Some applications of Laplace eigenvalues of

graphs, pp.227–275 in Graph Symmetry: Algebraic Methods
and Applications (ed. G. Hahn and G. Sabidussi), Kluwer,
1997.
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Which graph is best?
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Of course the question is not well defined. But which would
you choose for a network, if you were concerned about
connectivity, reliability, etc.?
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What makes a good network?

I No two vertices should be too far apart.

I There should be several alternative routes between two
vertices. (But should these routes be disjoint?)

I There should be no “bottlenecks”.
I Loss of a small part of the network should not result in

disconnection.

Of course, we are resource-limited, else we would just put
multiple edges between any two nodes.
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Trees and forests

A forest is a graph without cycles. A tree is a connected forest.

A tree on n vertices has n− 1 edges. More generally, a forest on
n vertices which has k connected components has n− k edges.
Given a graph G, a spanning subgraph of G is a graph
consisting of all the vertices and some of the edges of G. If it is
a tree (or forest), we call it a spanning tree (or spanning forest)
of G.
Every connected graph has a spanning tree. Cayley’s Theorem
says that the complete graph Kn has nn−2 spanning trees.
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Which graph is best connected?

Here are some ways of measuring the “connectivity” of a
graph.

I How many spanning trees does it have? The more
spanning trees, the better connected. The first graph has
2000 spanning trees, the second has 576.

I Electrical resistance. Imagine that the graph is an electrical
network with each edge being a 1-ohm resistor. Now
calculate the resistance between each pair of terminals, and
sum over all pairs; the lower the total, the better
connected. In the first graph, the sum is 33; in the second,
it is 206/3, more than twice as large.
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Which graph is best connected?

I Isoperimetric number. This is defined to be

ι(G) = min
{
|∂S|
|S| : S ⊆ V(G), 0 < |S| ≤ n/2

}
,

where n = |V(G)| and for a set S of vertices, ∂S is the set of
edges from S to its complement. Large isoperimetric
number means that there are many edges out of any set of
vertices. The isoperimetric number for the first graph is 1
(there are just five edges between the inner and outer
pentagons), that of the second graph is 1/5 (there is just
one edge between the top and bottom pieces).



The Laplacian of a graph

Let G be a graph on n vertices. (Multiple edges are allowed but
loops are not.)

The Laplacian matrix of G is the n× n matrix L = L(G) whose
(i, i) entry is the number of edges containing vertex i, while for
i 6= j the (i, j) entry is the negative of the number of edges
joining vertices i and j.
This is a real symmetric matrix; its eigenvalues are the
Laplacian eigenvalues of G. Note that its row sums are zero.
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The weighted Laplacian

Suppose that we have positive weights w(e) on the edges of G.
Then the weighted Laplacian has the (i, i) entry the sum of
weights of edges containing i, and whose (i, j) entry for i 6= j is
minus the sum of the weights of edges joining i to j.

If the weights are rational, then we may multiply them by the
least common multiple of the denominators to make them
integers. Then replace an edge of weight w by w edges, to
obtain a multigraph with the same Laplacian.
For general real weights, replace them first by rational
approximations.
We will not consider weighted Laplacians.
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Relation to classical Laplacian

The classical Laplacian is a second-order differential operator
defined on functions on a manifold, closely related to potential
theory, the wave equation, etc.

A manifold can be triangulated, that is, approximated by a
graph drawn in it. If we take the weight of an edge to be
inversely proportional the square of its length, then the
weighted Laplacian of the graph is an approximation to the
Laplacian of the manifold.
In the other direction, given a graph, we can build a manifold
reflecting its structure. Given a d-valent vertex, take a sphere
with d holes; glue spheres corresponding to the vertices of an
edge together along the corresponding holes.
We won’t pursue this any further.
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Adjacency matrix and Laplacian

The usual adjacency matrix A(G) of a graph G on n vertices has
rows and columns indexed by vertices; the (i, j) entry is the
number of edges connecting i to j.

Note that we can allow loops here (though it is not clear
whether a loop contributes 1 or 2 to the corresponding diagonal
entry!) For the Laplacian, we forbid loops.
If G is a regular graph with valency d, then L(G) = dI−A(G);
so the Laplacian eigenvalues are obtained by subtracting the
adjacency matrix eigenvalues from d.
If G is not regular, there is no such simple relationship between
the eigenvalues of the two matrices.
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Positive semi-definiteness

A square matrix A is positive semidefinite (aka non-negative
definite) if vAv> ≥ 0 for all row vectors v. If A is symmetric,
this is equivalent to saying that all its eigenvalues are
non-negative.

Theorem
The Laplacian of a graph is positive semidefinite.

For L is the sum of submatrices
(
+1 −1
−1 +1

)
, one for each edge

(this 2× 2 matrix in the positions indexed by the two vertices of
the edge, with zeros elsewhere). This matrix is positive
semidefinite (its eigenvalues are 2 and 0.)
We’ll see another argument for this later.
It follows that the eigenvalues of L are all non-negative.
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The multiplicity of zero

Theorem
The multiplicity of 0 as an eigenvalue of L is equal to the number of
connected components of the graph.

An eigenvector with zero eigenvalue is a function on the
vertices whose value at i is the weighted average of its values
on the neighbours of i, each neighbour weighted by the
number of edges joining it to i. (If you know about harmonic
functions, you will recognise this!) Considering a vertex where
the maximum modulus is achieved, we see that the same value
occurs on all neighbours, so the function is constant on
connected components.
In particular, if the graph is connected (as we always assume),
the zero eigenvalue (called “trivial”) has multiplicity 1; the
other eigenvalues are nontrivial. The eigenvectors for the
trivial eigenvalue are the constant vectors.
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On average

Note that the sum of the eigenvalues is the trace of L, which is
the sum of the vertex valencies, or twice the number of edges.
So the average of the non-trivial eigenvalues is
2|E(G)|/(|V(G)| − 1); it depends just on the numbers of
vertices and edges, and the detailed structure of the graph has
no effect.

We’ll see that other means, in particular the geometric and
harmonic means, of the non-trivial eigenvalues, give us
important information!
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Examples

The Petersen graph is strongly regular; its adjacency matrix A
satisfies A2 + A− 2I = J, where J is the all-1 matrix; its
eigenvalues are 3, 1 and −2, and so the Laplacian eigenvalues
are 0, 2 and 5, with multiplicities 1, 5 and 4 respectively.

For the other graph in our introductory example, the Laplacian
eigenvalues are 0, 2, 3 (multiplicity 2), 4 (multiplicity 2), 5, and
the roots of x3 − 9x2 + 20x− 4 (which are approximately 0.2215,
3.2892, and 5.4893).
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The Rayleigh principle

Recall that eigenvectors corresponding to distinct eigenvalues
of a symmetric matrix are orthogonal.

Note that I am using row vectors here!

Theorem
Let λ1, λ2 be the smallest and second-smallest eigenvalues of the
symmetric matrix A, and suppose that λ1 is a simple eigenvalue with
eigenvector u. Let v be any non-zero vector orthogonal to u. Then

vAv>

vv>
≥ λ2,

with equality if and only if v is an eigenvector with eigenvalue λ2.
This is obvious when v is expressed as a linear combination of
eigenvectors of A.
There is an extension to any eigenvalue.
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This is obvious when v is expressed as a linear combination of
eigenvectors of A.
There is an extension to any eigenvalue.



The cutset lemma

Theorem
Let G be a connected graph on n vertices, and E a set of m edges
whose removal disconnects G into vertex sets of sizes n1 and n2, with
n1 + n2 = n. Let µ be the smallest non-trivial eigenvalue of L. Then
m ≥ µn1n2/(n1 + n2).

For let V1 and V2 be the vertex sets in the theorem, and let v be
the vector with value n2 on vertices in V1, and −n1 in vertices
in V2. These values are chosen so that v is orthogonal to the
all-1 vector (the trivial eigenvector). Clearly,
vv> = n1n2

2 + n2n2
1 = (n1 + n2)n1n2.

I claim that v>Lv = m(n1 + n2)2. Recall that L is the sum of
submatrices corresponding to edges; we have to add the
contributions of these. An edge within one of the parts
contributes 0; one between the parts contributes (n1 + n2)2. The
claim follows.
The theorem follows from the Rayleigh principle.
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Isoperimetric number

Theorem
Let G be a connected graph whose smallest nontrivial Laplacian
eigenvalue is µ. Then the isoperimetric number ι(G) is at least µ/2.

For let S be a set of at most half the vertices, and let |S| = n1,
|V \ S| = n2, and |∂(S)| = m. Then by the cutset lemma,

|∂(S)|
|S| =

m
n1
≥ µn2

n1 + n2
≥ µ

2
.

So, on one of our criteria, a good network is one whose smallest
nontrivial Laplacian eigenvalue is as large as possible.
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Examples

In our two examples, the smallest nontrivial Laplacian
eigenvalues are 2 (for the Petersen graph) and 0.2215 (for the
other graph).

Note that the Petersen graph has isoperimetric number 1,
meeting the bound of half the least non-trivial eigenvalue. So
the vector which is +1 on the outer pentagon and −1 on the
inner pentagram is an eigenvector.
In the other graph, the true value is a bit more than half the
smallest eigenvalue.
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Expanders

Loosely, an expander is a regular connected graph whose
smallest non-trivial Laplacian eigenvalue is large. The above
result shows that expanders have large isoperimetric numbers.

More precisely, a sequence (Gn : n ∈N) is a sequence of
expanders if there is a constant c > 0 such that the smallest
non-trivial Laplacian eigenvalue of every graph Gn is at least c.
It is known that a random regular graph is an expander with
high probability; but explicit constructions are more difficult.
The first constructions were given by Margulis and by
Lubotzky, Phillips and Sarnak, and depend on substantial
number-theoretic and group-theoretic background.
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Cheeger’s inequality

Cheeger’s inequality is a result about Laplacians of manifolds;
it has a discrete analogue. It gives a bound in the other
direction between the isoperimetric number and the smallest
nontrivial Laplacian eigenvalue.

Theorem
Let G be a connected graph; let ∆ be the maximum valency of G, and
µ the smallest nontrivial Laplacian eigenvalue. Then

ι(G) ≤
√

2∆µ.

Mohar improved the upper bound to
√
(2∆− µ)µ if the graph

is connected but not complete.
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Incidence matrix

Choose a fixed but arbitrary orientation of the edges of the
graph G. Define the vertex-edge incidence matrix Q to have
rows indexed by vertices, columns by edges, and (v, e) entry
+1 if v is the head of the edge e, −1 if v is the tail of e, and 0
otherwise.
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Incidence matrix and Laplacian

Theorem
Let G have incidence matrix Q and Laplacian L. Then QQ> = L.

For the (v, v) entry of QQ> is the number of edges with either
head or tail at v; and the (v, w) entry is the sum of −1 for all
edges with head at v and tail at w or vice versa.
This shows, again, that L is positive semidefinite. And note that
the orientation doesn’t matter.
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The Moore–Penrose inverse

Let A be a real symmetric matrix. Then we have a spectral
decomposition of A:

A = ∑
λ∈Λ

λPλ,

where Λ is the set of eigenvalues of A, and Pλ is the orthogonal
projector onto the space of eigenvectors with eigenvalue λ.

We define the Moore–Penrose inverse of A by

A− = ∑
λ 6=0

λ−1Pλ.

In other words, we invert A where we can.
The Moore–Penrose inverse is a quasi-inverse of A in the sense
of ring theory: that is,

A−AA− = A−, AA−A = A.
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The Moore–Penrose inverse of the Laplacian

We will see a lot of the matrix L−, where L is the Laplacian of a
graph G on n vertices.

If G is connected, then the projector onto the trivial eigenspace
is J/n, where J is the all-1 matrix. So adding this to L changes
the trivial eigenvalue to 1, and subtracting it takes the 1 off
again.
In other words,

L− = (L + J/n)−1 − J/n.
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Electrical networks

As mentioned earlier, we regard the graph G as an electrical
network, where we regard each edge as a one-ohm resistor.
Given any two vertices i and j, the effective resistance R(i, j)
between i and j is the voltage of a battery which, when
connected to the two vertices, causes a current of 1 ampere to
flow.

In order to calculate R(i, j), we need to calculate the currents
and potentials in the network. This requires some basic results
from 19th century physics: Ohm’s and Kirchhoff’s laws.
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Ohm’s Law and Kirchhoff’s Laws

I Ohm’s Law: the potential drop in each edge is the product
of the current and the resistance (and so is equal to the
current since we have set all resistances to 1).

I Kirchhoff’s Voltage Law: the sum of the potential drops on
any path between vertices i and j is independent of the
choice of path.

I Kirchhoff’s Current Law: if vertex i is not connected to the
battery, then the sum of the currents flowing into i is equal
to the sum of the currents flowing out.
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Resistance distance

I begin by showing that effective resistance defines a metric on
the vertex set of the graph.

Theorem
R is a metric on the vertex set of the graph.
The proof depends on a lemma:

Lemma
If we connect the terminals of a battery to two vertices i and j, then
the potential of any other vertex lies between the potentials of i and j.
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Proof of the lemma

First observe that, if h is any vertex other than a terminal, then
the net current into h is zero; by Ohm’s law, this implies that the
potential on h is the average of the potentials of its neighbours.
So potential is a harmonic function (thinking of the graph as a
“manifold” whose “boundary” is the pair of terminals).

Let h be a vertex with smallest potential, and suppose that it is
a non-terminal vertex. Then all neighbours of v must have the
same potential as h.
By induction and connectedness, all vertices have the same
potential, a contradiction.
So the smallest and greatest potential are realised at terminals,
as required.
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Proof of the theorem

Clearly R(i, j) is non-negative, and zero only if i = j; also it is
symmetric in i and j. We have to prove the triangle inequality:
R(i, j) + R(j, k) ≥ R(i, k).

Let r1 = R(i, j), and r2 = R(j, k). We define two current flows in
the graph as follows. For the first one, we connect a battery
with voltage r1 to i and j (with i at the higher potential). This
causes unit current to flow out of i and into j. If P1 denotes the
corresponding potential, then P1(i)− P1(j) = r1, and
P1(j)− P1(k) ≤ 0, by the lemma. So P1(i)− P1(k) ≤ r1.
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Similarly, a battery of voltage r2 connected to j and k causes a
unit current to flow out of j and into k; the potential satisfies
P2(j)− P2(k) = r2, and P2(i)− P2(j) ≤ 0. So P2(i)− P2(k) ≤ r2.

Since Ohm’s and Kirchhoff’s Laws are linear, we can add these
two solutions. The resulting solution has a unit current flowing
out of i and into k. With P = P1 + P2, we thus have
P(k)− P(i) = R(i, k), and so

R(i, k) = (P1(k)− P1(i)) + (P2(k)− P2(i)) ≤ r1 + r2.
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Resistance distance

In view of this theorem, we refer to the metric R(i, j) as the
resistance distance.

This is an important metric, with many applications. Michael
Kagan’s conference talk gave much further information from
both the points of view of mathematics and physics, including
other methods of computing the metric, and applications to a
process called resistance distance transform of a graph, related
to Weisfeiler–Lehman stabilisation.
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Resistance distance and the Laplacian

We now show how the resistance distance can be calculated
from the Laplacian matrix of the graph.

Theorem
Let G be a connected graph with Laplacian L. Then the effective
resistance between i and j is

L−ii + L−jj − L−ij − L−ji ,

where L− is the Moore–Penrose inverse of L.
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Proof of the theorem

Kirchhoff’s voltage law and Ohm’s Law are taken care of if we
take a vector p of potentials with components indexed by
vertices, and require that the current on the edge e is equal to
the potential difference between its ends. (As before, we take a
fixed ordering of each edge, and take the current to be negative
if it flows from head to tail of the edge.) Note that p is defined
up to adding a constant vector.

This is expressed by the requirement that pQ is the vector of
currents in the edges, where Q is the vertex-edge incidence
matrix.
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Then pQQ> = pL is a vector whose ith entry is the sum of the
signed currents into the vertex i. So Kirchhoff’s current law
says that pQQ> has all entries zero except at the two vertices
connected to the battery. If the current is 1 ampere, the entries
in pL = pQQ> are +1 and −1 on these two vertices. Let us
write pL = fi − fj, where fi is the unit basis vector corresponding
to vertex i.

Now fi − fj is orthogonal to the all-1 vector, so (fi − fj)L− = p.
This gives the vector of potentials. The potential difference
between i and j is the dot product of this vector with fi − fj, that
is, xL−x>, where x = fi − fj. This is the potential difference
required to make a current of 1 ampere flow; hence it is the
effective resistance between i and j. This can be written

R(i, j) = L−ii + L−jj − L−ij − L−ji ,

as required.
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The average pairwise resistance

One of our criteria for a good network is that the average
pairwise resistance between two vertices should be small. The
next theorem shows that this is equivalent to maximizing the
harmonic mean of the nontrivial Laplacian eigenvalues.

Theorem
The average pairwise resistance is equal to 2 divided by the harmonic
mean of the nontrivial Laplacian eigenvalues.
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Proof of the resistance theorem

The sum of the resistances between all ordered pairs of vertices
is

∑
i 6=j

R(i, j) = 2(n− 1)Trace(L−)− 2 ∑
i 6=j

L−ij = 2n Trace(L−),

since the sum of all elements of L− is zero (as the all-1 vector is
an eigenvector with eigenvalue 0).

So the average pairwise resistance is 2 Trace(L−)/(n− 1).
Now the trace of L− is the sum of the reciprocals of the
non-zero eigenvalues of L, and so we are done.
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Examples

For the Petersen graph, the harmonic mean of the non-trivial
eigenvalues is

(((5 · 1/2) + (4 · 1/5))/9)−1 = 30/11,

so the average resistance is 11/15.
For the other graph, a similar calculation gives 135/103, so the
average resistance is 206/135.



Example: Petersen graph

For the Petersen graph, we can exploit symmetry to calculate
the resistance between two terminals. Two vertices equivalent
under a symmetry fixing the terminals must be at the same
potential, and so edges between them can be neglected.

If the terminals i and j are joined, the graph reduces to a
pentagon i = i0, i1, i2, i3, i4 = j, with one edge from i to j, two
from i0 to i1 and from i3 to i4, and four from i1 to i2 and i2 to i3.
So the resistance of the path (i0, i1, i2, i3, i4) is
1/2 + 1/4 + 1/4 + 1/2 = 3/2. This is in parallel with a single
edge, so the overall resistance is 1/(1 + 2/3) = 3/5.
Similar but slightly more complicated arguments give the
resistance between non-adjacent terminals as 4/5. (Exercise:
prove this using symmetry.)
So the total is 15 · 3/5 + 30 · 4/5 = 33, and the average is
33/45 = 11/15, agreeing with the eigenvalue calculation.
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The Matrix-Tree Theorem

Theorem
Let G be a connected graph on n vertices. Then the following three
quantities are equal:
1. the number of spanning trees of G;
2. (λ2 · · · λn)/n, where λ2, . . . , λn are the nontrivial Laplacian

eigenvalues of G;
3. any cofactor of L(G) (that is, the determinant of the matrix

obtained by deleting row i and column j, multiplied by (−1)i+j).

Since one of our criteria for a good network is a large number
of spanning trees, this is equivalent to maximizing the
geometric mean of the non-trivial Laplacian eigenvalues.
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The Cauchy–Binet formula

The proof depends on the Cauchy–Binet formula , which says
the following:

Theorem
Let A be an m× n matrix, and B an n×m matrix, where m < n.
Then

det(AB) = ∑
X

det(A(X))det(B(X)),

where X ranges over all m-element subsets of {1, . . . , n}. Here A(X)
is the m×m matrix whose columns are the columns of A with index
in X, and B(X) is the m×m matrix whose rows are the rows of B
with index in X.

The proof is an exercise.
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Proof of the Matrix-Tree Theorem

Let Q be the incidence matrix of G, so that QQ> = L. Let i be
any vertex of G, and let N = Qi be the matrix obtained by
deleting the row of Q indexed by i.

It can be shown that, if X is a set of n− 1 edges, then det(N(X))
is ±1 if X is the edge set of a spanning tree, and is 0 otherwise.
(The proof of this is also an exercise.)
By the Cauchy–Binet formula, det(NN>) is equal to the
number of spanning trees. But NN> is the principal cofactor of
L(G) obtained by deleting the row and column indexed by i.
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Matrices with row and column sum zero

To finish the proof, let A be any matrix with row and column
sums zero, and let B = A + J, where J is the all-1 matrix. We
evaluate det(B).

I Replace the first row by the sum of all the rows; this makes
the entries in the first row n and doesn’t change the other
entries; the determinant is unchanged.

I Replace the first column by the sum of all the columns.
This makes the first entry n2, and the other entries in this
column n, and doesn’t change the other entries of the
matrix; the determinant is unchanged.

I Subtract 1/n times the first row from each other row. The
elements of the first column, other than the first, become 0;
we subtract 1 from all elements not in the first row or
column of B, leaving the entries of A; and the determinant
is unchanged.
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We conclude det(B) is n2 times the (1, 1) cofactor of A.

It is easily checked that the argument works for any cofactor of
A. So all cofactors of A are equal.
Finally, the all-1 vector is an eigenvector of B with eigenvalue n,
while its other eigenvalues are the same as those of A. Thus
det(B) is n times the product of the nontrivial eigenvalues of A.
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Cayley’s formula

The Matrix-Tree theorem gives us a simple proof of the famous
formula of Cayley:

Theorem
The number of spanning trees in the complete graph on n vertices is
equal to nn−2.
For the Laplacian of the complete graph is nI− J, where J is the
all-1 matrix; its non-trivial Laplacian eigenvalues are all equal
to n, and so the number of spanning trees is nn−1/n = nn−2.

In our two examples, the number of spanning trees are 2000
and 576 respectively. (Exercise: prove this using our earlier
calculations.)
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The Jacobian group

The Jacobian group Jac(G) of a graph G on n vertices (aka
Picard group, critical group, or sandpile group) is defined to be
the quotient Zn/ rowspace(L(G)) of Zn by rowspace(L(G)),
the space spanned by the rows of G.

Jac(G) is a finitely generated abelian group. If G is connected, it
has one factor which is the infinite cyclic group Z; so it has the
form Z⊕A, where A is a finite abelian group whose order is
T(G), the number of spanning trees of G.
For example, Jac(Kn) is the direct sum of n− 2 copies of the
cyclic group Z/(n) of order n, refining Cayley’s theorem.
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Thus Jac(G) is a more refined invariant than T(G), since
different graphs may have the same number of spanning trees
but different structures of the group A (as direct sum of cyclic
groups).

In his invited lecture, Alexander Mednykh explained this
material, and gave details of the calculation of the structure of
Jac(G) for a number of graphs G, including circulants and
cyclic covers with finite valency.
However, we do not know an application of the Jacobian group
in the theory of optimal design. Perhaps one of our readers can
find one . . .
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Markov chains

A Markov chain on a finite state space S is a sequence of
random variables with values in S which has no memory: the
state at time n + 1 depends only on the state at time n.

A Markov chain is defined by a transition matrix P, with rows
and columns indexed by S, where pij is the probability of
moving from state i to state j in one time step.
As usual, the entries of P are non-negative and the row sums
are equal to 1.
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Random walks

An important example of a Markov chain is the random walk
on a graph G. The state space is the vertex set V(G). At time n,
if the process is at vertex i, it chooses at random (with equal
probabilities) an edge containing i, and at stage n + 1 moves to
the other end of this edge.

If the graph has no loops, then the probability of moving from i
to j is −Lij/Lii, where L is the Laplacian. In particular, if the
graph is regular with degree d, then P = I− L/d.
More generally, P = I−D−1L, where D is the diagonal matrix
whose (i, i) entry is the number of edges incident with i.
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Theory of Markov chains

If a Markov chain has transition matrix P, then the (i, j) entry of
Pm is the probability of moving from i to j in m steps.

The Markov chain is connected if, for any i and j, there exists m
such that (Pm)ij 6= 0; it is aperiodic if the the greatest common
divisors of the values of m for which (Pm)ii 6= 0 for some i is 1.
A random walk on a graph G is connected if and only if G is
connected, and is aperiodic if and only if G is not bipartite.
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Theorem
A connected aperiodic Markov chain has a unique limiting
distribution, to which it converges from any starting distribution.

Since the row sums of P are all 1, we see that Pp> = p>, where
p is the all-1 vector; our assumptions imply that the multiplicity
of 1 as eigenvalue is 1. Now left and right eigenvalues are
equal, so there is a vector q 6= 0 such that qP = q. It can be
shown that the entries of q are non-negative; we can normalise
it so that their sum is 1. Then q is a probability distribution
which is fixed by P, so it is the unique stationary distribution.
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Convergence

Suppose that P is symmetric. Then we can write P = ∑ λPλ

where λ runs over the eigenvalues, and Pλ is the projection
onto the λ eigenspace. Then Pm = ∑ λmPλ.

It is also true, by the Perron–Frobenius theorem, that every
eigenvalue λ satisfies |λ| ≤ 1. If the Markov chain is irreducible
and aperiodic, then 1 is a simple eigenvalue, and all other
eigenvalues have modulus strictly less than 1.
Now let x be any non-negative vector whose coordinates sum
to 1. We can regard x as the initial probability distribution.
Then we have

xPm = ∑ λmxPλ → xP1

as m→ ∞. So xP1 = q is the limiting distribution, and the
convergence to q is like µm where µ is the second-largest
modulus of an eigenvalue. So the convergence is exponential if
µ is not close to 1.
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Random walks revisited

For a random walk, we have P = I−D−1L. Then

D1/2PD−1/2 = I−D−1/2LD−1/2.

This matrix is symmetric, and is similar to P; so P is indeed
diagonalizable. However, the analysis is a bit more
complicated, and not given here.

Its eigenvalues are 1− λ, where λ is an eigenvalue of the
positive semidefinite matrix D−1/2LD−1/2, so for rapid
convergence we require that the smallest positive eigenvalue of
this matrix should be as large as possible.
Thus the problem is a twisted version of the usual problem
about the smallest non-trivial Laplacian eigenvalue. If the
graph is regular, so that D = dI, then it reduces exactly to the
former problem.
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Its eigenvalues are 1− λ, where λ is an eigenvalue of the
positive semidefinite matrix D−1/2LD−1/2, so for rapid
convergence we require that the smallest positive eigenvalue of
this matrix should be as large as possible.
Thus the problem is a twisted version of the usual problem
about the smallest non-trivial Laplacian eigenvalue. If the
graph is regular, so that D = dI, then it reduces exactly to the
former problem.



Other results

The smallest nontrivial Laplacian eigenvalue µ of a graph G is
an important parameter which occurs in many other situations.

For example, a recent result of Krivelevich and Sudakov asserts
that, in a regular graph of valency d on n vertices, if µ is
sufficiently large in terms of n and d, then the graph is
Hamiltonian.
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Summing up

We saw that three important parameters of a connected graph,
which are determined by its Laplacian spectrum, are:
I the harmonic mean of the non-trivial Laplacian

eigenvalues, which tells us about the average resistance
between pairs of vertices;

I the geometric mean of the non-trivial Laplacian
eigenvalues, which tells us about the number of spanning
trees;

I the smallest non-trivial Laplacian eigenvalue, which is
related to the isoperimetric number and the rate of
convergence of the random walk on the graph.

In the next lecture, we will see that these are also important
parameters in experimental design!
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