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Block designs

A block design ∆ consists of
I a set of bk experimental units (also called plots),

partitioned into b blocks of size k;
I a set of v treatments;
I a function f from the experimental units onto the set of

treatments, so that f (ω) denotes the treatment applied to
experimental unit ω.

g(ω) denotes the block containing ω.

Nij denotes the number of occurrences of treatment i in block j.

For treatments i and l, the concurrence of i and l is

λil =
b

∑
j=1

NijNlj.
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Outline

1. Two graphs associated with a block design.
2. Laplacian matrices.
3. Estimation and variance.
4. Resistance distance.
5. Spanning trees.
6. Measures of optimality.
7. Some optimal designs.
8. Designs with very low replication.
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Section 1

Two graphs associated with a block design.
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Levi graph

The Levi graph G̃ of a block design ∆ has

I one vertex for each treatment,
I one vertex for each block,
I one edge for each experimental unit,

with edge ω joining vertex f (ω) to vertex g(ω).

It is a bipartite graph,
with Nij edges between treatment-vertex i and block-vertex j.

Friedrich W. Levi was a German Jewish mathematician who
had to leave Nazi Germany in the 1930s. He moved to India,
where he worked at the Indian Statistical Institute with
R. C. Bose. He invented this graph to describe a block design.
Later authors named it after him.
Some other authors call it the incidence graph.
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Example 1: v = 4, b = k = 3
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Example 2: v = 8, b = 4, k = 3
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Concurrence graph

The concurrence graph G of a block design ∆ has

I one vertex for each treatment,
I one edge for each unordered pair α, ω, with α 6= ω,

g(α) = g(ω) and f (α) 6= f (ω):
this edge joins vertices f (α) and f (ω).

There are no loops.

If i 6= j then the number of edges between vertices i and j is

λij =
b

∑
s=1

NisNjs;

this is called the concurrence of i and j,
and is the (i, j)-entry of Λ = NN>.
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Example 2: v = 8, b = 4, k = 3
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Example 3: v = 15, b = 7, k = 3
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Section 2

Laplacian matrices.

12/62



Laplacian matrix of the concurrence graph

The Laplacian matrix L of the concurrence graph G is a
v× v matrix with (i, j)-entry as follows:

I if i 6= j then
Lij = −(number of edges between i and j) = −λij;

I Lii = valency of i = ∑
j 6=i

λij.

The off-diagonal entries are the same as those of −Λ.
The diagonal entries make each row sum to zero.

So the graph-theoretic definition of Laplacian matrix gives us
exactly the Laplacian matrix L that we defined before.
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Laplacian matrix of the Levi graph

The Laplacian matrix L̃ of the Levi graph G̃ is a
(v + b)× (v + b) matrix with (i, j)-entry as follows:

I L̃ii = valency of i

=

{
k if i is a block
replication ri of i if i is a treatment

I if i 6= j then Lij = −(number of edges between i and j)

=


0 if i and j are both treatments
0 if i and j are both blocks
−Nij if i is a treatment and j is a block, or vice versa.

So L̃ =

[
R −N
−N> kIb

]
,

which is exactly the same as our previous definition of L̃.
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Connectivity

All row-sums of L and of L̃ are zero,
so both matrices have 0 as eigenvalue
on the appropriate all-1 vector.

Theorem
The following are equivalent.
1. 0 is a simple eigenvalue of L;
2. G is a connected graph;
3. G̃ is a connected graph;
4. 0 is a simple eigenvalue of L̃;
5. the design ∆ is connected in the sense that all differences between

treatments can be estimated.

From now on, assume connectivity.

Call the remaining eigenvalues non-trivial.
They are all non-negative.
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Section 3

Estimation and variance.
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Variance: why does it matter?

We want to estimate all the simple differences τi − τj.

Put Vij = variance of the best linear unbiased estimator for
τi − τj.

The length of the 95% confidence interval for τi − τj is
proportional to

√
Vij.

(If we always present results using a 95% confidence interval,
our interval will contain the true value in 19 cases out of 20.)

The smaller the value of Vij, the smaller is the confidence
interval, the closer is the estimate to the true value (on
average), and the more likely are we to detect correctly which
of τi and τj is bigger.

We can make better decisions about new drugs, about new
varieties of wheat, about new engineering materials . . . if we
make all the Vij small.
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How do we calculate variance?

Theorem
Assume that all the noise is independent, with variance σ2.
If ∑i xi = 0, then the variance of the best linear unbiased estimator of
∑i xiτi is equal to

(x>L−x)kσ2.

In particular, the variance of the best linear unbiased estimator of the
simple difference τi − τj is

Vij =
(

L−ii + L−jj − 2L−ij
)

kσ2.

Comment
All vectors in this lecture are column vectors.
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. . . Or we can use the Levi graph

Theorem
The variance of the best linear unbiased estimator of the simple
difference τi − τj is

Vij =
(

L̃−ii + L̃−jj − 2L̃−ij
)

σ2.
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Section 4

Resistance distance.
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Electrical networks: variance and resistance

We can consider the concurrence graph G as an electrical
network, and define the resistance distance Rij between any
pair of distinct vertices i and j.

Comment
The resistance distance Rij was written as R(i, j) in Lecture II.

Theorem
The resistance distance Rij between vertices i and j in G is

Rij =
(

L−ii + L−jj − 2L−ij
)

.

So
Vij = Rij × kσ2.

Resistance distances are easy to calculate without
matrix inversion if the graph is sparse.
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Comments on calculating resistance distance

If I want to calculate the resistance distance between vertices i
and j, I start by assigning voltage [0] at vertex i.
Then I send a current x along one of the edges out of i.
I am not a physicist, so I show the electricity running uphill,
and the end of that edge gets allocated voltage [x].

I apply one of Kirchoff’s Laws at each vertex,
and the other of Kirchoff’s Laws in each edge.

When I reach vertex j, there are some equations to solve,
enabling me to give the voltage [V] at vertex j and then
calculate the total current I flowing from vertex i to vertex j.

Ohm’s Law gives
V = IR,

which I use to calculate Rij as V/I.
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Example calculation: v = 12, b = 6, k = 3
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. . . Or we can use the Levi graph

If i and j are treatment vertices in the Levi graph G̃
and R̃ij is the resistance distance between them in G̃ then

Vij = R̃ij × σ2.
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Example 2 yet again: v = 8, b = 4, k = 3
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Levi graph for the example before last
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Resistance calculation for previous slide

R̃12 = R̃1B + R̃B2

because resistances in series are simply added together.

But R̃B2 = 1, and so
R̃12 = R̃1B + 1.

There are two disjoint paths from vertex 1 to vertex B,
of lengths 5 and 7. These have resistances 5 and 7 in parallel, so

R̃1B =
1

1
5 +

1
7

=
1
12
35

=
35
12

.

Therefore
R̃12 =

35
12

+ 1 =
47
12

.
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Concurrence graph or Levi graph?

For hand calculation when the graphs are sparse,
or for calculations for ‘general’ graphs with variable v,
it may be simpler to use the Levi graph rather than the
concurrence graph if k ≥ 3.
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Section 5

Spanning trees.
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Spanning trees in the two graphs

Theorem
Let G and G̃ be the concurrence graph and Levi graph for a connected
incomplete-block design for v treatments in b blocks of size k.
Then the number of spanning trees for G̃ is equal to
kb−v+1 times the number of spanning trees for G.
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Spanning trees in the two graphs: proof

Proof.
Let t and t̃ be the number of spanning trees for G and G̃
respectively. Then

t = det L1

= det(kR1 −N1N>1 )

and t̃ = det L̃1,

where the subscript 1 denotes the removal of the row and
column corresponding to treatment 1.

det L̃1 = det
[

R1 −N1
−N>1 kIb

]
= det

[
R1 − k−1(N1)N>1 −N1

−N>1 + k−1(kIb)N>1 kIb

]
= det

[
k−1L1 −N1

0 kIb

]
= k−(v−1) det L1 × kb

so t̃ = det L̃1 = kb−v+1 det L1 = kb−v+1t.
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Spanning trees in the two graphs: strategy

We have shown that
t̃ = kb−v+1t,

where t is the number of spanning trees for the concurrence
graph and t̃ is the number of spanning trees for the Levi graph.

If v ≥ b + 2 then t̃ < t, so count the number of spanning trees
for the Levi graph, then multiply by kv−b−1 to obtain the
number of spanning trees for the concurrence graph.

If v ≤ b then do it the other way round.
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Example 2: v = 8, b = 4, k = 3, spanning trees
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Section 6

Measures of optimality.
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Optimality: Average pairwise variance

The variance of the best linear unbiased estimator of the simple
difference τi − τj is

Vij =
(

L−ii + L−jj − 2L−ij
)

kσ2 = Rijkσ2.

We want all of the Vij to be small.

1
kσ2 ∑

1≤i<j≤v
Vij = (v− 1)∑

i
L−ii −∑

i 6=j
L−ij

= v ∑
i

L−ii because the row sums of L− are zero

= v Trace(L−)

= v
(

1
θ1

+ · · ·+ 1
θv−1

)
,

where θ1, . . . , θv−1 are the nontrivial eigenvalues of L.
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Optimality: Average pairwise variance, continued

The variance of the best linear unbiased estimator of the simple
difference τi − τj is Vij. We want all of the Vij to be small.

Put V̄ = average value of the Vij. Then

V̄ =
∑1≤i<j≤v Vij

v(v− 1)/2
=

kσ2

v(v− 1)/2
× v

(
1
θ1

+ · · ·+ 1
θv−1

)
,

= 2kσ2 × 1
harmonic mean of θ1, . . . , θv−1

,

where θ1, . . . , θv−1 are the nontrivial eigenvalues of L.
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A-Optimality

A block design is called A-optimal if it minimizes the average
of the variances Vij;

—equivalently, it maximizes the harmonic mean of the
non-trivial eigenvalues of the Laplacian matrix L;
over all block designs with block size k and the given v and b.
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Non-trivial eigenvalues of L

θ1, . . . , θv−1 are the nontrivial eigenvalues of L.

If the design is binary then all diagonal elements of L are equal
to r(k− 1), and so

θ1 + · · ·+ θv−1 = vr(k− 1).

If these are all equal then their harmonic mean is

vr(k− 1)
v− 1

,

and so
Vij = V̄ = 2kσ2 × v− 1

vr(k− 1)
,

as we saw before for BIBDs.
If θ1 . . . , θv−1 are not all equal then
their harmonic mean is smaller and so V̄ is larger.
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their harmonic mean is smaller and so V̄ is larger.
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Optimality: Confidence region

When v > 2 the generalization of confidence interval is the
confidence ellipsoid around the point (τ̂1, . . . , τ̂v) in the
hyperplane in Rv with ∑i τi = 0. The volume of this confidence
ellipsoid is proportional to√√√√v−1

∏
i=1

1
θi

= (geometric mean of θ1, . . . , θv−1)
−(v−1)/2

=
1√

v× number of spanning trees for G
.

(Lecture II showed that the number of spanning trees for G is

θ1 × θ2 × · · · × θv−1

v
,

using the notation λ2, . . . , λn for θ1, . . . , θv.)
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D-Optimality

A block design is called D-optimal if it minimizes the volume
of the confidence ellipsoid for (τ̂1, . . . , τ̂v) ;

—equivalently, it maximizes the geometric mean of the
non-trivial eigenvalues of the Laplacian matrix L;
—equivalently, it maximizes the number of spanning trees for
the concurrence graph G;
—equivalently, it maximizes the number of spanning trees for
the Levi graph G̃;
over all block designs with block size k and the given v and b.
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Optimality: Worst case

If x is a contrast in Rv then the variance of the estimator of x>τ
is (x>L−x)kσ2.

If we multiply every entry in x by a constant c then this
variance is multiplied by c2; and x>x is also multiplied by c2.

The worst case is for contrasts x giving the maximum value of

x>L−x
x>x

.

These are precisely the eigenvectors corresponding to θ1,
where θ1 is the smallest non-trivial eigenvalue of L.
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E-Optimality

A block design is called E-optimal if it maximizes the
smallest non-trivial eigenvalue of the Laplacian matrix L;

over all block designs with block size k and the given v and b.
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Section 7

Some optimal designs.
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BIBDs are optimal

Theorem (Kshirsagar, 1958; Kiefer, 1975)

If there is a balanced incomplete-block design (BIBD) (2-design)
for v treatments in b blocks of size k,
then it is A-, D- and E-optimal.
Moreover, in this case, no non-BIBD is A-, D- or E-optimal.

Proof.
Let T = Trace(L). For any given value of T, the harmonic mean
of θ1, . . . , θv−1, the geometric mean of θ1, . . . , θv−1, and the
minimum of θ1, . . . , θv−1 are all maximized at T/(v− 1) when
θ1 = · · · = θv−1 = T/(v− 1). This occurs if and only if L is a
scalar multiple of Iv − v−1Jv.
Since T = ∑i(kri − λii) = bk2 −∑i λii, the trace is maximized if
and only if the design is binary. Among binary designs, the
off-diagonal elements of L are equal if and only if the design is
balanced.
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Folklore about optimal designs

For many years after it was known that BIBDs are A-, D- and
E-optimal, statisticians assumed the following.

I Only binary incomplete-block designs can be optimal.

I Optimal incomplete-block designs must have
all their treatment replications as equal as possible.

I If an incomplete-block design is optimal on one of the
three optimality criteria, then it must be optimal,
or close to optimal, on the other two optimality criteria.

So we restricted our search for optimal designs,
using these assumptions.

Now we know that all three assumptions are wrong.
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Example 4: v = 5, b = 7, k = 3
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Example 4: v = 5, b = 7, k = 3; optimality criteria

1 1 1 1 2 2 2
2 3 3 4 3 3 4
3 4 5 5 4 5 5

1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5

maximal trace eigenvalues equal

eigenvalues 13, 10, 10, 9 10, 10, 10, 10

harmonic mean 10.31 10

geometric mean 10.40 10

smallest 9 10
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Some group-divisible optimal designs

Theorem (Cheng, 1981)

Group-divisible designs with two groups in which
the between-group concurrence is one more than the within-group
concurrence are A-, D- and E-optimal.

Theorem (Cheng, 1981)

Group-divisible designs in which the between-group concurrence is
one more than the within-group concurrence
are A-, D- and E-optimal among equireplicate designs whose
concurrences differ by at most one.
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Some other optimal partially balanced designs

Theorem (Cheng and Bailey, 1991)

Partially balanced designs with two associate classes,
in which the two concurrences differ by 1
and the matrix (rk)−1L = r−1C has an eigenvalue equal to 1
are A-, D- and E-optimal among binary equireplicate designs.

In particular, square-lattice designs are A-, D- and E-optimal
among binary equireplicate designs.

Comment
Generalized quadrangles are a special case of partially
balanced incomplete-block designs with two associate classes
which satisfy these conditions.
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Section 8

Designs with very low replication.
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Lowest possible replication

The Levi graph has v + b vertices and bk edges.

For connectivity, bk ≥ v + b− 1.

The extreme case is v− 1 = b(k− 1).

Then all connected Levi graphs are trees,
so the D-criterion does not distinguish them.

In a tree, resistance distance is the same as graph distance,
so the A-optimal designs have Levi graphs which are stars
with a treatment-vertex at the centre:
these are just the queen-bee designs.

The E-optimal designs are also queen-bee designs:
proof coming up.
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The E-optimal designs are also queen-bee designs:
proof coming up.
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E-optimal designs when the Levi graph is a tree
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By the Cutset Lemma, eigenvalues 1 (between blocks),

θ1 ≤ 2
(

1
5
+

1
10

)
< 1 k (within any block), v (queen vs rest)

This argument works for This argument works for
all non-queen-bee designs all queen-bee designs

The only E-optimal designs are the queen-bee designs.
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More details about the calculation for the queen-bee design

Label the treatments so that the queen-bee is 1. For the design
shown in the previous slide with k = 3, put treatments 2 and 3
in the same block, treatments 4 and 5 in the same block, and so
on. Then the top left-hand corner of L is given by

14 −1 −1 −1 −1 . . .
−1 2 −1 0 0 . . .
−1 −1 2 0 0 . . .
−1 0 0 2 −1 . . .
−1 0 0 −1 2 . . .

...



Put x = (0, 1,−1, 0, 0, . . . , 0)>, y = (0, 1, 1,−1,−1, 0, . . . , 0)>

and z = (14,−1,−1,−1,−1, . . . ,−1)>. Then Lx = 3x (in
general, Lx = kx); Ly = y; and Lz = 15z (in general, Lz = vz).
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Only slightly less extreme

The Levi graph has v + b vertices and bk edges.

If it is connected and is not a tree then bk ≥ v + b.
The next case to consider is v = b(k− 1).

Then every Levi graph has a single cycle.

The number of spanning trees for the Levi graph
is equal to the length of the cycle, so the D-optimal designs
have a cycle of length 2b. Like this . . .
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A- and E-optimal designs when the Levi graph has 1 cycle

Arguments using resistance in the Levi graph show that the
A-optimal designs have a Levi graph with a short cycle,
and one special treatment in the cycle occurs in every block
which is not in the cycle.

Arguments using the Cutset Lemma in the concurrence graph
show that the E-optimal designs have similar structure,
usually with an even shorter cycle in the Levi graph.
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Best designs when the Levi graph has 1 cycle

Suppose that v = b(k− 1).

For 2 ≤ s ≤ b, construct the design C(b, k, s) as follows.

I Construct a design for s treatments in s blocks of size 2
whose Levi graph is a single cycle.

I If k > 2, then insert k− 2 extra treatments into each block.
I If s < b, then designate one of the original s treatments as a

“pseudo-queen”.
I Each of the remaining b− s blocks contains the

pseudo-queen and k− 1 further treatments.
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A-optimal designs when the Levi graph has 1 cycle

Theorem
If v = b(k− 1) then the A-optimal designs are those in C(b, k, s),
where the value of s is given in the following table.

k b 2 3 4 5 6 7 8 9 10 11 12 ≥ 13
2 2 3 4 5 6 7 8 4 4 4 3 or 4 3
3 2 3 4 5 6 3 3 3 3 3 2 2
4 2 3 4 5 3 2 2 2 2 2 2 2
5 2 3 4 5 2 2 2 2 2 2 2 2

≥ 6 2 3 4 2 2 2 2 2 2 2 2 2
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Some non-binary designs when the Levi graph has 1 cycle

Suppose that v = b(k− 1).

If k ≥ 3, then construct the design C(b, k, 1) as follows.

I Start with a single block of size 2 containing a single
treatment twice.

I Insert k− 2 extra treatments into this block.
I If k > 3 then designate the treatment which occurs twice in

this block as the queen-bee treatment.
If k = 3 then either treatment in this block may be
designated the queen-bee treatment.

I Each of the remaining b− 1 blocks contains the queen-bee
treatment and k− 1 further treatments.
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E-optimal designs when the Levi graph has 1 cycle

Theorem
If v = b(k− 1) and b ≥ 3 and k ≥ 3 then the E-optimal designs are
I those in C(b, k, b) if 3 ≤ b ≤ 4;
I those in C(b, k, 2) and those in C(b, k, 1) if b ≥ 5.

Theorem
If k = 2 and v = b ≥ 3 then the E-optimal designs are
I those in C(b, 2, b) if b ≤ 5;
I those in C(b, 2, b), those in C(b, 2, 3) and those in C(b, 2, 2) if

b = 6;
I those in C(b, 2, 3) and those in C(b, 2, 2) if b ≥ 7.
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