
Laplacian eigenvalues and optimality:
IV. Further topics

R. A. Bailey and Peter J. Cameron
Groups and Graphs, Designs and Dynamics

Yichang, China, August 2019



Further topics

The last lecture will discuss some additional topics. These
include:
I Sylvester designs (an interesting class of examples);

I how to recognise the concurrence graph of a block design;
I variance-balanced designs;
I the relation of optimality parameters to other graph

invariants such as the Tutte polynomial.
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Block designs and concurrence graphs

We have seen that the values of the various parameters
associated with optimality criteria of block designs depend
only on the concurrence graph of the design: to find the
optimal design we have to find the graph which maximizes the
number of spanning trees, or minimizes the average resistance;
or whatever.

For block designs with block size 2, the design is the same as its
concurrence graph (treatments are vertices and blocks are
edges). But for larger block size, there are interesting questions.
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Sylvester designs

There is no affine plane, or even pair of orthogonal Latin
squares, of order 6. As a substitute, we propose the Sylvester
designs, which I now describe.

These designs have 36 points and 48 blocks of size 6. Two
points are contained in either one or two blocks: the pairs lying
in two blocks are the edges of the Sylvester graph, to be
defined. So the concurrence matrix has 8 on the diagonal, and 1
or 2 off-diagonal, with 2 for edges of the Sylvester graph. Thus
the concurrence matrix is 8I + (J− I + A), where A is the
adjacency matrix of the Sylvester graph.
As we have seen, designs with this concurrence matrix will all
have the same Laplacian eigenvalues, and so will coincide on
the A-, D- and E-criteria.

Conjecture

Sylvester designs are A-, D- and E-optimal among all block designs
with 36 points and 48 blocks of size 6.
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The outer automorphism of S6

The symmetric group S6 has an outer automorphism. This
means that it acts in two different ways on sets of six points,
say A and B. An element of S6 which is a transposition on A is a
product of three transpositions on B.

The set B can be constructed as the set of 1-factorisations of the
complete graph on six vertices (on the vertex set A). The details
follow on the next slide.
Now we define a graph on the vertex set A× B (the Cartesian
product) by the rule that (a1, b1) is joined to (a2, b2) if and only
if the transposition (a1, a2) on A corresponds to a product of
three transpositions on B, one of which is (b1, b2). This is the
Sylvester graph.
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The outer automorphism of S6
The group S6 acts on a set A of six points. It also acts on the 15
2-subsets of A (edges of the complete graph, or duads in
Sylvester’s terminology), and on the 15 · 6 · 1/3! = 15 partitions
into three sets of two (1-factors, or Sylvester’s synthemes). The
set B of size 6 is the set of partitions of the duads into five
synthemes (1-factorisations, or Sylvester’s synthematic totals.
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The first two synthemes in a total must form a 6-cycle. The
remaining three must use the three long and six short
diagonals. There are only two patterns for a syntheme of
diagonals, shown in magenta and green. We cannot use the
magenta since only short diagonals would remain. So the
remaining three synthemes each consist of a long diagonal and
two perpendicular short diagonals.



The outer automorphism of S6
The group S6 acts on a set A of six points. It also acts on the 15
2-subsets of A (edges of the complete graph, or duads in
Sylvester’s terminology), and on the 15 · 6 · 1/3! = 15 partitions
into three sets of two (1-factors, or Sylvester’s synthemes). The
set B of size 6 is the set of partitions of the duads into five
synthemes (1-factorisations, or Sylvester’s synthematic totals.

q q q
q q qq q q

q q q
q q qq q q

�
��

�
��

�
��

T
TT

T
TT

T
TT

T
TT

T
TT

T
TT

�
��

�
��

�
��

�
�
�
�
�

T
T
T
T
T

The first two synthemes in a total must form a 6-cycle. The
remaining three must use the three long and six short
diagonals. There are only two patterns for a syntheme of
diagonals, shown in magenta and green. We cannot use the
magenta since only short diagonals would remain. So the
remaining three synthemes each consist of a long diagonal and
two perpendicular short diagonals.



The outer automorphism of S6
The group S6 acts on a set A of six points. It also acts on the 15
2-subsets of A (edges of the complete graph, or duads in
Sylvester’s terminology), and on the 15 · 6 · 1/3! = 15 partitions
into three sets of two (1-factors, or Sylvester’s synthemes). The
set B of size 6 is the set of partitions of the duads into five
synthemes (1-factorisations, or Sylvester’s synthematic totals.

q q q
q q qq q q

q q q
q q qq q q

�
��

�
��

�
��

T
TT

T
TT

T
TT

T
TT

T
TT

T
TT

�
��

�
��

�
��

�
�
�
�
�

T
T
T
T
T

The first two synthemes in a total must form a 6-cycle. The
remaining three must use the three long and six short
diagonals. There are only two patterns for a syntheme of
diagonals, shown in magenta and green. We cannot use the
magenta since only short diagonals would remain. So the
remaining three synthemes each consist of a long diagonal and
two perpendicular short diagonals.



This shows that the synthematic total (partition of duads into
synthemes) is unique up to isomorphism.

There are 15 choices of the first syntheme, 8 of the second, and
3 · 2 · 1 of the remaining ones. Since the synthemes can be
chosen in any order, the number of synthematic totals is
15 · 8 · 2!/5! = 6.
Let B be the set of six synthematic totals. Then the group S6 acts
on B, and it is easy to see that this action is not isomorphic to
the action on the set A of vertices; so there is an outer
automorphism mapping the first to the second. Moreover, we
can reverse the procedure, and find that the square of this
automorphism is inner.
It is remarkable that 6 is the only number n, finite or infinite, for
which the symmetric group Sn has an outer automorphism.
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The Sylvester graph

An alternative definition of the Sylvester graph: the vertex set
is A× B; the pairs (a1, b1) and (a2, b2) are joined if the duad
{a1, a2} belongs to the unique syntheme which the totals b1 and
b2 have in common.

The Sylvester graph is a distance-transitive graph on 36 vertices
with valency 5. Its adjacency matrix has eigenvalues 5 (with
multiplicity 1), 2 (multiplicity 16), −1 (multiplicity 10) and −3
(multiplicity 9). From these, the Laplacian eigenvalues of the
concurrence matrix are easily computed: the non-trivial ones
are 39, 42 and 44.
Its vertices can be regarded as the points of the 6× 6 grid
A× B. A vertex and its five neighbours lie in distinct rows and
columns. The graph contains no triangles or quadrangles. Any
two vertices in different rows and columns lie at distance 1 or 2;
if they are not adjacent, they have just one common neighbour.
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We define a starfish to consist of a vertex and its neighbours; a
galaxy of starfish is the set of six starfish derived from the
vertices in a column of the array.
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A Sylvester design

Consider the following 48 sets of size 6:

I the six rows and the six columns of the array;
I the 36 starfish.

It follows from the properties of the graph that two adjacent
vertices lie in two blocks (the two starfish defined by these
vertices), while any other pair of vertices are contained in a
single block.
This design admits the full automorphism group of the graph,
which is the automorphism group of S6 (a group of order 1440).
The design is resolvable, that is, the blocks can be partitioned
into eight sets of six, each of which covers all the points. (The
resolution classes are the rows, the columns, and the six
galaxies of starfish.)
Good designs with lower replication can be obtained by using
only some galaxies.
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More Sylvester designs

As well as this beautiful design, there are others.

Emlyn Williams discovered one using his CycDesign software.
It turned out to have the same A-value as the previous one, and
a short computation showed that in fact it had the same
concurrence matrix. However, the automorphism group of this
design is the trivial group.
Another Sylvester design, with 144 automorphisms, was found
by Leonard Soicher using semi-Latin squares.
All these designs are resolvable.

Problem
Can the Sylvester designs be classified up to isomorphism?
This would probably be a very big computation!
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Sparse versus dense

We have seen that the optimality criteria for block designs tend
to agree on designs with dense concurrence graphs, but give
very different results in the case where the concurrence graph
is sparse.

We have also seen that optimality for block designs tends to
agree with desirable characteristics for networks.
Now sparse networks occur for the same reason as block
designs with low replication, namely resource limitations. So
these results are potentially of interest in network theory as
well.
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BIBDs

Recall that a BIBD for v treatments, with b blocks of size k, has
the property that the replication of any treatment is a constant,
r, and the concurrence of two treatments is a constant, λ, where

I bk = vr;
I r(k− 1) = (v− 1)λ.

The concurrence graph of such a design is the λ-fold complete
graph in which any two vertices are joined by λ edges.
Moreover, the design is binary.
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Steiner triple systems

For k = 3 and λ = 1, such a design is a Steiner triple system.
The blocks are 3-subsets of the set of points, and two distinct
points lie in a unique block.

The two equations for a Steiner triple system assert that

2r = v− 1, 3b = vr,

so that r = (v− 1)/2 and b = v(v− 1)/6. The condition that
these are integers shows that v ≡ 1 or 3 (mod 6).
In the nineteenth century, Thomas Kirkman showed that this
necessary condition is also sufficient for the existence of a
Steiner triple system.
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Wilson’s Theorem

In the early 1970s, Wilson discovered a far-reaching
generalisation of this theorem. His result has wide
applicability; we quote it just for BIBDs.

Suppose that we have a BIBD with given k and λ. Given v, k, λ,
the counting equations show that r = λ(v− 1)/(k− 1) and
b = rv/k = λv(v− 1)/k(k− 1). So a necessary condition is that
k− 1 divides λ(v− 1) and k divides λv(v− 1).

Theorem
If v is sufficiently large (in terms of k and λ), then the above necessary
conditions are also sufficient for the existence of a BIBD.
Of course, this doesn’t tell us either how large v has to be, or
what to do if the necessary conditions are not satisfied!
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Variance-balanced designs

A block design is variance-balanced if its concurrence matrix is
a linear combination of I and the all-1 matrix J. Such a design, if
binary, is a BIBD, and hence optimal on all criteria we have
discussed; but here we do not assume that the design is binary.
For short we write VB(v, k, λ) for a variance-balanced design
with given values of these parameters, where λ is the common
off-diagonal entry of the concurrence matrix.

The non-binary design with v = 5, k = 3, and b = 7 given
earlier, is variance-balanced with λ = 2:

1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5

Treatments 1 and 2 concur twice in the first block; any other
pair lie in two different blocks.
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Optimality

Variance-balanced designs are not always optimal. Here are
two examples of variance-balanced designs with v = b = 7 and
k = 6:

I the design whose blocks are all the 6-subsets of the set of
points;

I the design obtained from the Fano plane by doubling each
occurrence of a point in a block (so that the first block is the
multiset [1, 1, 2, 2, 3, 3].

The first design, with λ = 5, is a BIBD, and hence is optimal by
Kiefer’s Theorem. The second has λ = 4.



Optimality

Variance-balanced designs are not always optimal. Here are
two examples of variance-balanced designs with v = b = 7 and
k = 6:
I the design whose blocks are all the 6-subsets of the set of

points;

I the design obtained from the Fano plane by doubling each
occurrence of a point in a block (so that the first block is the
multiset [1, 1, 2, 2, 3, 3].

The first design, with λ = 5, is a BIBD, and hence is optimal by
Kiefer’s Theorem. The second has λ = 4.



Optimality

Variance-balanced designs are not always optimal. Here are
two examples of variance-balanced designs with v = b = 7 and
k = 6:
I the design whose blocks are all the 6-subsets of the set of

points;
I the design obtained from the Fano plane by doubling each

occurrence of a point in a block (so that the first block is the
multiset [1, 1, 2, 2, 3, 3].

The first design, with λ = 5, is a BIBD, and hence is optimal by
Kiefer’s Theorem. The second has λ = 4.



Optimality

Variance-balanced designs are not always optimal. Here are
two examples of variance-balanced designs with v = b = 7 and
k = 6:
I the design whose blocks are all the 6-subsets of the set of

points;
I the design obtained from the Fano plane by doubling each

occurrence of a point in a block (so that the first block is the
multiset [1, 1, 2, 2, 3, 3].

The first design, with λ = 5, is a BIBD, and hence is optimal by
Kiefer’s Theorem. The second has λ = 4.



Two questions about variance-balanced designs

Two things we would like to know about variance-balanced
designs are

I Given k and λ, for which values of v do VB(v, k, λ) designs
exist, and what are the possible numbers of blocks of such
designs?

I When are variance-balanced designs optimal in some
sense?

Morgan and Srivastav have investigated these designs (which
they call “completely symmetric”).
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VB designs with maximal trace

Morgan and Srivastav define two new parameters of a VB
design, as follows:

r =
⌊

bk
v

⌋
, p = bk− vr,

so that bk = vr + p and 0 ≤ p ≤ v− 1. Thus, in a BIBD we have
p = 0. Note that the use of r does not here imply that the design
has constant replication!

Morgan and Srivastav further say that a VB design has
maximum trace if its parameters satisfy the equation
r(k− 1) = (v− 1)λ.
In our examples above, r = b7 · 6/7c = 6 and p = 0. Since
r(k− 1)/(v− 1) = 6 · 5/6 = 5, we see that the first design has
maximal trace, but the second does not.
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The reason for the term “maximal trace” is as follows. Since
bk < v(r + 1), some treatment occurs at most r times on the bk
plots. Each occurrence contributes at most k− 1 edges to the
concurrence graph, so the valency of this vertex is at most
r(k− 1). But the concurrence graph of a VB design is regular,
with valency (v− 1)λ; so we have (v− 1)λ ≤ r(k− 1), and the
trace of the concurrence matrix (which is v(v− 1)λ) is at most
vr(k− 1); equality for the trace implies that (v− 1)λ = r(k− 1).

The above argument shows that, in a VB design of maximum
trace, any point lies in at least r blocks (counted with
multiplicity), with equality if and only if the point occurs at
most once in each block. Since bk = vr + p, it follows that the
number of “bad” points (which occur more than once in some
block) is at most p. So if p = 0, the design is binary, and is a
BIBD or 2-design.
In the examples, we have r = 6, p = 0, confirming that the first
design has maximum trace but the second does not.
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Optimality

Theorem
A variance-balanced design with maximal trace is E-optimal.

This was proved by Morgan and Srivastav.

Theorem
A variance-balanced design is E-optimal if k < v and the number of
non-binary blocks is at most v/2.
Proof coming up . . .
It follows that our example of a non-binary design, with v = 5,
k = 3 (which is variance-balanced and has one non-binary
block) is E-optimal.
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Let x be the number of non-binary blocks. A binary block of
size k contributes k(k− 1)/2 edges to the concurrence graph,
while a non-binary block contributes fewer than this number.

So the number of edges (which we know to be λv(v− 1)/2) is
at most bk(k− 1)/2− x, so that x ≥ (bk(k− 1)− λv(v− 1))/2.
This gives

b ≤ λv(v− 1) + 2x
k(k− 1)

.

The non-trivial Laplacian eigenvalues of the λ-fold complete
graph are all equal to λv. So, if our design is not E-optimal,
then a E-better design (with the same values of (v, b, k)) has
least Laplacian eigenvalue greater than λv.
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Let δ be the minimal degree of the concurrence graph of such a
design. Then δ edges separate a single vertex from the rest of
the graph.

By the Cutset Lemma,

λv < µ1 ≤ δ(1 + 1/(v− 1)) = δv/(v− 1),

so that δ > λ(v− 1), or δ ≥ λ(v− 1) + 1.
Hence the concurrence graph has at least v(λ(v− 1) + 1)/2
edges. Since each block of this design contributes at most
k(k− 1)/2 edges, we have

b ≥ v(λ(v− 1) + 1)
k(k− 1)

.

Combining these two bounds for b, we see that x ≥ v/2. So, if
x < v/2, then no E-better design can exist.
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Existence of VB designs of maximal trace

If we have two VB designs on the same set of v points with the
same block size k, having parameters λ1 and λ2, then the
multiset union of the block multisets is again VB, with
parameter λ1 + λ2. The new design is not necessarily of
maximum trace; but it is so if one of the VB designs we start
with is a BIBD and the other is of maximum trace, or if the sum
of their p parameters is less than v.

For example, suppose that k = 3. A VB design of maximum
trace satisfies 2r = (v− 1)λ, so that λ is even or v is odd.
Moreover, λ = 1 is impossible (except for Steiner triple
systems), since a non-binary block gives concurrence at least 2.
Morgan and Srivastav proved that these necessary conditions
are sufficient:

Theorem
A VB(v, 3, λ) design of maximum trace exists whenever λ(v− 1) is
even and λ > 1.
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Proof

A BIBD with k = 3 and λ = 6 exists for all v. So it is enough to
settle the existence question for λ in a complete set of non-zero
residues mod 6. Now BIBDs exist in the following cases:

I for λ = 1 or 5, if v ≡ 1 or 3 mod 6;
I for λ = 2 or 4, if v ≡ 0 or 1 mod 3;
I for λ = 3, if v is odd.

We construct VB designs for λ = 2 and v ≡ 2 mod 3; they have
p = 1, so the union of two copies settles λ = 4. For λ = 5 or
λ = 7, with v odd, there is a BIBD unless v ≡ 5 mod 6; in that
case we can take a 2-design with λ = 3 and a VB design with
λ = 2 or λ = 4.
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Here is a construction for VB(v, 3, 2) designs having just one
non-binary block. In this case, as we have seen, we must have
v ≡ 2 mod 3.

Suppose first that v ≡ 2 mod 6. There exist Steiner triple
systems of orders v± 1. Take two such systems, on the point
sets {1, . . . , v + 1} and {1, . . . , v− 1} respectively; let the sets of
blocks be B1 and B2. Without loss of generality, suppose that
the third point of the block B of B1 containing v and v + 1 is
v− 1.
Now we take the point set of the new design to be {1, . . . , v}.
For the blocks, we first remove the block B from B1; then we
replace each occurrence of v + 1 in any other block with v; the
resulting blocks together with [v− 1, v− 1, v] make up the
design.
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We have to check that {v− 1, v} lies only in [v− 1, v− 1, v],
while every other pair {i, j} lies in two blocks. For the first, note
that the only other candidate, namely B, has been removed. For
the second, there are two cases:

I j = v, i 6= v− 1: in B1, there is one block containing i and v,
and one containing i and v + 1 (in which v + 1 is replaced
by v). No block of B2 can occur.

I v /∈ {i, j}: one block of B1 and one of B2 contain {i, j}, and
these two points are unchanged in these blocks.



We have to check that {v− 1, v} lies only in [v− 1, v− 1, v],
while every other pair {i, j} lies in two blocks. For the first, note
that the only other candidate, namely B, has been removed. For
the second, there are two cases:
I j = v, i 6= v− 1: in B1, there is one block containing i and v,

and one containing i and v + 1 (in which v + 1 is replaced
by v). No block of B2 can occur.

I v /∈ {i, j}: one block of B1 and one of B2 contain {i, j}, and
these two points are unchanged in these blocks.



We have to check that {v− 1, v} lies only in [v− 1, v− 1, v],
while every other pair {i, j} lies in two blocks. For the first, note
that the only other candidate, namely B, has been removed. For
the second, there are two cases:
I j = v, i 6= v− 1: in B1, there is one block containing i and v,

and one containing i and v + 1 (in which v + 1 is replaced
by v). No block of B2 can occur.

I v /∈ {i, j}: one block of B1 and one of B2 contain {i, j}, and
these two points are unchanged in these blocks.



There is a similar but more elaborate construction when
v ≡ 5 mod 6. In this case, both v− 2 and v + 2 are orders of
Steiner triple systems.

Since there are many non-isomorphic Steiner triple systems,
this construction gives rise to many VB designs with k = 3.
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Example

Consider the case v = 5, k = 3, λ = 2. Each block contributes
either a triangle or a double edge to the concurrence graph,
depending on whether or not it is binary. There are four cases:

I Six triangles and one double edge (b = 7): we saw an
example.

I Four triangles and four double edges (b = 8): take the
BIBD consisting of all the 3-subsets of a 4-set and join its
four points to the fifth point by four double edges.

I Two triangles and seven double edges (b = 9): take a
triangle twice and double the seven uncovered edges.

I Ten double edges (b = 10): this is a boring design with all
its blocks non-binary.

The values of (r, p) in the four cases are (4, 1), (4, 4), (5, 2) and
(6, 0). So the first two have maximum trace; the others don’t.
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Is G a concurrence graph?

Given a graph G on v vertices, and an integer k, we would like
to know: Is G the concurrence graph of a block design with block size
k?

If k = 2, then the graph is “the same” as the design; the blocks
are just edges of the graph.
If the design is binary, then each block contributes a complete
graph of size k; so we have to decide whether G is the
edge-disjoint union of complete graphs of size k. This is the
question which is answered by Wilson’s theorem in the case of
the λ-fold complete graph. In general, it is necessary that every
vertex has valency divisible by k− 1, and the total number of
edges is divisible by k(k− 1)/2.
What happens in general?
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Weighted cliques

Let w1, w2, . . . , wm be positive integers, where m > 1. A
weighted clique with weights w1, . . . , wm is a graph on m
vertices, in which the ith and jth vertices are joined by wiwj
edges. Its weight is the sum of the weights wi.

If all wi are equal to 1, this is just a complete graph on m
vertices, and has weight m.

Theorem
The graph G is the concurrence graph of a block design with block size
k if and only if it is an edge-disjoint union of weighted cliques each
with weight k.
In the design, if a weighted clique with weights w1, . . . , wm
corresponds to block j, then the weights are equal to the
incidence matrix entries Nij for appropriate values of i.
This generalizes the “graph decomposition” interpretation of
BIBDs. As we saw, the weighted cliques of weight 3 are a
triangle and a double edge.
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Decomposition into weighted cliques

Usually the decomposition into weighted cliques, if it exists, is
far from unique.

I The Fano plane arises from a decomposition of the 21
edges of K7 into seven triangles. It is unique up to
isomorphism, but there are 30 different ways to make the
decomposition (corresponding to the fact that the
automorphism group of the Fano plane has index 30 in the
symmetric group S7).

I In our variance-balanced design with v = 5, k = 3 and
b = 7, we took the block [1, 1, 2]. However, the block
[1, 2, 2] would have been just as good, and would have
given us the same concurrence graph.
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Other graph parameters

For the final part of the course, we turn to something
completely different . . .

The number of spanning trees of a graph (the D-optimality
parameter) also happens to be an evaluation of a famous
two-variable polynomial, the Tutte polynomial, of the graph.
Other evaluations of the Tutte polynomial give lots more
information about the graph: number of proper colourings
with a given number of colours, number of acyclic or totally
cyclic orientations, etc.
We will define the Tutte polynomial and consider how it is
related to some of the invariants we have met.
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The chromatic polynomial

A proper colouring of a graph with q colours is an assignment
of colours to the vertices so that adjacent vertices get different
colours.

It is well-known that the number of proper colourings of G is
the evaluation at q of a monic polynomial of degree n = |V(G)|,
known as the chromatic polynomial of G.
This is usually proved by “deletion-contraction”. It suits my
purpose here to give a different proof, using
“inclusion-exclusion”.
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Let S be the the set of all (proper or not) vertex-colourings of G
with q colours. For any edge e, let Te be the set of colourings for
which e is improper (has both ends of the same colour); and for
A ⊆ E(G) let

TA =
⋂
e∈A

Te,

with T∅ = S by convention.

Let k(A) be the number of connected components of the graph
(V(G), A). A colouring in T(A) has the property that all the
vertices in a connected component of this graph have the same
colour. So |TA| = qk(A). Then there are qk(A) colourings in which
all the edges in A are bad.
So by PIE, the number of proper colourings is

∑
A⊆E(G)

(−1)|A|qk(A) = PG(q),

where PG is the chromatic polynomial of G.
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Rank

The rank r(A) of a set A of edges of a graph G on n vertices is
defined to be the cardinality of the largest acyclic subset of A. It
is easy to see that this is n− k(A).

Rank has another interpretation. Recall the (signed)
vertex-edge incidence matrix Q of G, as defined in Lecture 2.
Then r(A) is the rank (in the sense of linear algebra) of the
submatrix formed by the columns indexed by edges in A. The
proof is an exercise.
In particular, if G = (V, E) is connected, then r(E) = n− 1.
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The Tutte polynomial

The Tutte polynomial of the graph G = (V, E) is the polynomial

TG(x, y) = ∑
A⊆E

(x− 1)r(E)−r(A)(y− 1)|A|−r(A).

Many important graph parameters are obtained by plugging in
special values for x and y, possibly multiplying by a simple
factor.
In particular, putting x = y = 2, every term is 1, so that
TG(2, 2) = 2|E|.
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Other specialisations

Assume that G is connected.

Putting x = 1, the only non-zero terms are those which have
the exponent of (x− 1) equal to 0, that is, r(A) = r(E), so that
the graph (V, A) is connected. Similarly, putting y = 1, the only
non-zero terms are those with |A| = r(A), in other words, the
set A contains no cycles.
Hence
I TG(1, 2) is the number of connected spanning subgraphs of

G;
I TG(2, 1) is the number of spanning forests of G;
I TG(1, 1) is the number of spanning trees of G.

Note that TG(1, 1) is the number associated with D-optimality!
However, other optimality parameters don’t appear to be
specialisations of the Tutte polynomial.
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Examples

Neither of the Tutte polynomial and the Laplacian spectrum of
G determines the other.

In one direction, all trees on n vertices have Tutte polynomial
xn−1; but we have seen that they can be very different on A- or
E-optimality, and hence on Laplacian spectra.
In the other direction, the two strongly regular graphs with the
same parameters on 16 vertices have the same Laplacian
spectra, but have different Tutte polynomials: see below.
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Chromatic polynomial revisited

The formula for the Tutte polynomial looks very similar to the
formula we deduced for the chromatic polynomial. Indeed, a
little persistence shows that, for a connected graph G,

PG(q) = (−1)n−1qTG(0,−q + 1),

so the numbers of colourings are values of TG at integer points
on the negative real axis.



Two strongly regular graphs

Consider the following pair (G1, G2) of graphs: on the left, the
4× 4 square lattice graph (in which vertices in the same row or
column are joined), and on the right, the Shrikhande graph
(which is shown drawn on a torus: nearest neighbours are
joined, and opposite edges are identified).
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Each graph is strongly regular with parameters (16, 6, 2, 2):
there are 16 vertices, each vertex has valency 6, and any two
vertices have 2 common neighbours, whether or not they are
joined.

So the adjacency matrices satisfy A2 = 4I + 2J, and have
eigenvalues 6, 2 and −2; the Laplacian eigenvalues are 0, 4
and 8.
Each graph is associated with a lattice design. Take a Latin
square of order 4, and form a graph whose vertices are the cells,
two vertices adjacent if they are not in the same row or column
or contain the same symbol.
There are two essentially different Latin squares of order 4:
they are the Cayley tables of the Klein group V4 and the cyclic
group C4. The corresponding graphs are the lattice graph L2(4)
and the Shrikhande graph respectively.
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Colouring the graphs

A colouring of the square lattice with four colours is nothing
but a Latin square of order 4 (see below). There are 576 Latin
squares, and hence PG1(4) = 576.

However, calculation shows that PG2(4) = 240; so the chromatic
polynomials, and hence the Tutte polynomials, are different.t
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Orientations

An orientation of the edges of a graph G is acyclic if there are
no directed cycles; it is totally cyclic if every edge is contained
in a directed cycle.
Richard Stanley showed that the number a(G) of acyclic
orientations of G is

a(G) = |PG(−1)| = |TG(0, 2)|.

It is also known that the number of totally cyclic orientations is
c(G) = |TG(2, 0)|.

Now recall that the number of spanning trees is
t(G) = TG(1, 1).
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The Merino–Welsh conjecture

These three numbers are connected by a remarkable conjecture
of Merino and Welsh:

Conjecture

If G has no loops or bridges, then t(G) ≤ max{a(G), c(G)}.
That is, either the number of acyclic orientations or the number
of totally cyclic orientations dominates the number of spanning
trees.

The best result so far is by Carsten Thomassen, who showed
that this is true for sufficiently sparse graphs (where the
number of acyclic orientations wins) and for sufficiently dense
graphs (where the number of totally cyclic orientations wins).



The Merino–Welsh conjecture

These three numbers are connected by a remarkable conjecture
of Merino and Welsh:

Conjecture

If G has no loops or bridges, then t(G) ≤ max{a(G), c(G)}.
That is, either the number of acyclic orientations or the number
of totally cyclic orientations dominates the number of spanning
trees.
The best result so far is by Carsten Thomassen, who showed
that this is true for sufficiently sparse graphs (where the
number of acyclic orientations wins) and for sufficiently dense
graphs (where the number of totally cyclic orientations wins).



Thomassen’s Theorem

Theorem
Let G be a connected graph without loops or bridges.
I If G has at least 4n edges, then t(G) ≤ c(G).

I If G has at most 16n/15 edges, then t(G) ≤ a(G).

The first result applies if the average valency is at least 8; the
second if it is at most 32/15 = 2.133 . . ..
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Jackson’s Theorem

A related theorem of Bill Jackson is intriguing:

Theorem
Let G be a connected graph without loops or bridges. Then

TG(1, 1)2 ≤ TG(0, 3) · TG(3, 0).

Of course, replacing 3 by 2 would give a strengthening of the
Merino–Welsh conjecture!
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Open problem: a tipping point?

We end with some research problems.

Problem
Given k, is there a number r0 such that, for designs with block size k
and average replication greater than r0, the different optimality
conditions agree?
The number r0 might also depend on v. However, work by
Robert Johnson and Mark Walters suggests that, for k = 2, r0
might be about 4. This is suggestively similar to Carsten
Thomassen’s result on the Merino–Welsh conjecture.
If so, what happens for average replication below r0? There
may be further “phase changes”.
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Open problem: dense simple graphs

For dense simple graphs (those obtained by removing just a
few edges from the complete graph), independent studies by
Aylin Cakiroglu and Robert Schumacher suggest that, both for
optimality and for maximizing the number of acyclic
orientations, the best graphs resemble Turán graphs: that is, the
edges removed should be as close as possible to a disjoint
union of complete graphs of the same size.

If we remove complete graphs of the same size, we get a
group-divisible design.

Problem
Prove the above assertion.
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Open problem: adding complete graphs

Aylin Cakiroglu and J. P. Morgan have investigated the
following problem. Choose an optimality parameter. For a
non-negative integer s, and given v, order the simple graphs on
v vertices with a fixed number of edges (or the regular simple
graphs of prescribed valency) by the rule that G1 <s G2 if the
union of G2 with s copies of Kv beats the union of G1 with s
copies of Kv.

They showed that this order stabilises for sufficiently large s.
But in cases which could be computed, it stabilises for s = 1 (or
at worst for s = 2).

Problem
Bound the value of s for which the order stabilises in terms of v.
One can also make the problem “continuous” by expressing the
parameter in terms of s and then allowing s to take real values.
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Open problem: variance-balanced designs

Problem
Given k and λ, find necessary and sufficient conditions on v for the
existence of a variance-balanced design of maximum trace with these
values of v, k, λ.

We saw that this was solved for k = 3 and all λ by Morgan and
Srivastav.
More generally, there are theorems about decomposing the
edge set of a graph into complete graphs of given sizes; find
theorems about decomposing the edge set of a graph into
weighted k-cliques, with perhaps some restrictions on the
cliques (e.g. as few as possible where the weights are not all 1).
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Open problems: Finite geometry

In finite geometry one meets many beautiful and symmetrical
block designs of various kinds: generalized polygons,
near-polygons, Grassmann geometries, . . .

Problem
Are these geometries optimal?
Also one meets geometries of higher rank, that is, with more
than two kinds of objects; they will have various rank 2
geometries as truncations and as residuals. These may be
relevant in experimental design, if there are several different
kinds of treatment, or of “nuisance factor” to be controlled.

Problem
What is the relation, if any, between optimality of different
truncations or residuals of the same higher-rank geometry?
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The end

That’s all; thank you all for lasting until the end of the course.

We may put further information on the course web page at
some point. If you are interested in this, or in working on some
of these problems, let us know!
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