
The Hall–Paige conjecture and an application

Peter J. Cameron
University of St Andrews

Algebra and Combinatorics seminar
30 January 2019



The dungeon

You are in a dungeon consisting of a number of rooms. Each
room has two doors, coloured red and blue, which open into
passages leading to another room (maybe the same one). Each
room also contains a special door; in one room, the door leads
to freedom, but in all the others, to death. You have a map of
the dungeon, but you do not know where you are.
Can you escape? In other words, is there a sequence of colours
such that, if you use the doors in this sequence from any
starting point, you will end in a known place?
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You can check that (Blue, Red, Blue) takes you to room 1 no
matter where you start.



Automata

The diagram on the last page shows a finite-state deterministic
automaton. This is a machine with a finite set of states, and a
finite set of transitions, each transition being a map from the set
of states to itself. The machine starts in an arbitrary state, and
reads a word over an alphabet consisting of labels for the
transitions (Red and Blue in the example); each time it reads a
letter, it undergoes the corresponding transition.
A reset word is a word with the property that, if the automaton
reads this word, it arrives at the same state, independent of its
start state. An automaton which possesses a reset word is
called synchronizing.
Not every finite automaton has a reset word. For example, if
every transition is a permutation, then every word in the
transitions evaluates to a permutation. How do we recognise
when an automaton is synchronizing?



Automata and transformation monoids

Combinatorially, an automaton is an edge-coloured digraph
with one edge of each colour out of each vertex. Vertices are
states, colours are transitions.
Algebraically, if Ω = {1, . . . , n} is the set of states, then any
transition is a map from Ω to itself. Reading a word composes
the corresponding maps, so the set of maps corresponding to
all words is a transformation monoid on Ω.
So an automaton is a transformation monoid with a
distinguished generating set. It is synchronizing if it contains a
map with rank 1.



Graph endomorphisms
Our graphs are simple (no directions, loops, or multiple edges).
The clique number ω(Γ) of a graph Γ is the number of vertices
in its largest complete subgraph, and the chromatic number
χ(Γ) is the smallest number of colours required for a
vertex-colouring so that adjacent vertices get different colours.
Let Γ and ∆ be graphs. A homomorphism from Γ to ∆ is a map
f from the vertex set of Γ to that of ∆ with the property that, for
any edge {v, w} of Γ, the image {vf , wf} is an edge of ∆.
An endomorphism of Γ is a homomorphism from Γ to itself.

Proposition

I A homomorphism from Km to Γ is an embedding of Km into Γ;
such a homomorphism exists if and only if ω(Γ) ≥ m.

I A homomorphism from Γ to Km is a proper colouring of Γ with m
colours; such a homomorphism exists if and only if χ(Γ) ≤ m.

I There are homomorphisms in both directions between Γ and Km
if and only if ω(Γ) = χ(Γ) = m.



The obstruction to synchronization

The endomorphisms of a graph Γ form a transformation
monoid; if Γ is not a null graph, then End(Γ) is not
synchronizing, since edges cannot be collapsed.

Theorem
Let S be a transformation monoid on Ω. Then S fails to be
synchronizing if and only if there exists a non-null graph Γ on the
vertex set Ω for which S ≤ End(Γ). Moreover, we may assume that
ω(Γ) = χ(Γ).

Proof.
Given a transformation monoid S, we define a graph Gr(S) in
which x and y are joined if and only if there is no element s ∈ S
with xs = ys. Show that S ≤ End(Gr(S)), that Gr(S) has equal
clique and chromatic number, and that S is synchronizing if
and only if Gr(S) is null.



Synchronizing groups

A permutation group is never synchronizing as a monoid, since
no collapses at all occur.
We abuse language by making the following definition. A
permutation group G on Ω is synchronizing if, for any map f
on Ω which is not a permutation, the monoid 〈G, f 〉 generated
by G and f is synchronizing.

Theorem
A permutation group G on Ω is non-synchronizing if and only if
there exists a G-invariant graph Γ, not complete or null, which has
clique number equal to chromatic number.



Synchronization in the hierarchy

A permutation group G on Ω is primitive if it preserves no
non-trivial equivalence relation on Ω; it is 2-homogeneous if it
acts transitively on the 2-element subsets of Ω (equivalently, it
preserves no non-trivial graph on the vertex set Ω). (Here a
graph or equivalence relation is trivial if it is invariant under
the full symmetric group.)

Theorem
Let G be a permutation group of degree n > 2.
I If G is synchronizing, then it is primitive.
I If G is 2-homogeneous, then it is synchronizing.
I None of these implications reverses.



The O’Nan–Scott Theorem

Here is a simple form of the O’Nan–Scott theorem which is
adequate for our needs.

Theorem
Let G be a finite primitive permutation group on Ω. Then either
(a) G preserves a Cartesian structure on Ω; or
(b) G is affine, diagonal or almost simple.

I won’t give all definitions. But type (a) preserve a Hamming
graph, whose vertices are all words of length m over a finite
alphabet of length A, two vertices joined if they differ in just
one position.
This graph has clique number |A|: the set
{(x, a2, . . . , am) : x ∈ A} is a clique. It also has chromatic
number |A|: take A to be an abelian group, and give (a1, . . . , am)
the colour ∑ ai. So type (a) are non-synchronizing.



O’Nan–Scott types

Affine groups have abelian normal subgroups. They have the
form

{x 7→ xA + c : c ∈ V, A ∈ H},

where V is a finite vector space and H an irreducible linear
group on V. They may or may not be synchronizing.
Almost simple groups satisfy T ≤ G ≤ Aut(T), where T is a
non-abelian finite simple group. The action is not specified.
They may or may not be synchronizing.
Diagonal groups are more difficult to define, so I will postpone
this. No diagonal group is known to be synchronizing (as far as
I know).



Latin squares

A Latin square of order n is an n× n array with entries taken
from an alphabet of size n, so that each letter in the alphabet
occurs once in each row and once in each column.

e a b c
a e c b
b c e a
c b a e

This is not just any old Latin square: it is the Cayley table, or
multiplication table, of the Klein group of order 4.



Transversals and orthogonal mates
A transversal is a set of cells, one in each row, one in each
column, and one containing each letter.

e a b c
a e c b
b c e a
c b a e

In this case we can partition the cells into transversals:

e a b c
a e c b
b c e a
c b a e

Regarding the colours as an alphabet we see a second Latin
square which is orthogonal to the first square, in the sense that
each combination of letter and colour occurs precisely once.



Not all Latin squares have transversals. Consider the following
square:

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Given a set of cells, one from each row and one from each
column, the sum of the row indices is 0 + 1 + 2 + 3 = 2
(mod 4). Similarly for the columns. Since each entry is the sum
of its row and column indices, the entries sum to 2 + 2 = 0
(mod 4). Thus the entries cannot be {0, 1, 2, 3}.
More generally, the Cayley table of a cyclic group of even order
has no transversal.



Complete mappings

Let G be a group. A complete mapping of G is a bijective map
φ : G→ G such that the map ψ defined by ψ(x) = xφ(x) is also
a bijection.
Given a transversal in the Cayley table of G, define φ and ψ by
the rule that φ(g) and ψ(g) are the column label and entry of
the transversal cell in row g. Then φ is a complete mapping as
above.
Also, if φ and ψ are as above, then the array with (g, h) entry
gψ(h) is a Latin square, which is an orthogonal mate for the
Cayley table.
Thus the following are equivalent:
I the Cayley table of G has a transversal;
I the Cayley table of G has an orthogonal mate;
I G has a complete mapping.



The Hall–Paige conjecture

In 1955, Marshall Hall Jr and Lowell J. Paige made the
following conjecture:

Conjecture

A finite group G has a complete mapping if and only if the Sylow
2-subgroups of G are trivial or non-cyclic.
They proved the necessity of their condition, and its sufficiency
in a number of cases, including soluble groups and symmetric
and alternating groups.
Hall was a well known group theorist and combinatorialist.
Paige was much less well known: he was a student of Richard
Bruck, had 6 students at UCLA, and has 18 papers (including
his thesis on neofields) listed on MathSciNet.



The Classification of Finite Simple Groups

The biggest theorem in mathematics states:

Theorem
A finite simple group is one of the following:
I a cyclic group of prime order;
I an alternating group An, n ≥ 5;
I a group of Lie type;
I a sporadic group (there are 26 of these).



Proof of the Hall–Paige conjecture

The Hall–Paige conjecture was proved in 2009 by Stuart
Wilcox, Anthony Evans, and John Bray.
Wilcox showed that its truth for all groups follows from its
truth for simple groups, and proved it for groups of Lie type,
except for the Tits group 2F4(2)′. (The first two types, cyclic and
alternating, are covered by Hall and Paige.)
Evans dealt with the Tits group and 25 of the 26 sporadic
groups.
Bray dealt with the final group, the Janko group J4.
The papers of Wilcox and Evans were published in the Journal
of Algebra in 2009. But Bray’s work has never been published.
So there is no proof of the conjecture in the literature.



Latin square graphs

Let A be a Latin square of order n. The corresponding Latin
square graph ΓA has vertices the cells of A, two vertices joined
if they lie in the same row or column or contain the same entry
in A.
For n > 2, this graph has clique number n: any row, column or
letter is a clique.
Also, the chromatic number is n if and only if A has an
orthogonal mate:

e a b c
a e c b
b c e a
c b a e



Diagonal groups
Recall the three classes of primitive groups not preserving a
Cartesian structure in the O’Nan–Scott theorem: affine,
diagonal and almost simple. I didn’t give you a definition of
diagonal groups. Here is a non-standard definition of a
subclass.
Let T be a non-abelian finite simple group. The diagonal group
D(T, 3) is the automorphism group of ΓA, where A is the Cayley
table of T. It has socle T3 (the factors acting on rows, columns
and letters), and the quotient is the direct product of the outer
automorphism group of T and the symmetric group S3.

Proposition

The group D(T, 3) is non-synchronizing.

Proof.
By Burnside’s Transfer Theorem, a non-abelian simple group
cannot have cyclic Sylow 2-subgroups. So by Hall–Paige, the
Latin square graph of its Cayley table has clique number equal
to chromatic number.



Diagonal groups with more socle factors

The diagonal groups D(T, r) with larger numbers of socle
factors are a little more difficult to define. But by a modification
of the above argument, we obtain:

Theorem
The diagonal group D(T, r) is non-synchronizing for r ≥ 3.
I proved this in China last October. Armed with this, I talked to
John Bray and persuaded him to send me his proof and to be
an author of the paper. It is now available as arXiv 1811.12671.
(It also contains results on D(T, 2) and on affine groups.)
I should add that John took the opportunity to make a
thorough check on his earlier computations. At several points
in the argument, different computations have been done so as
to provide some checks.



John Bray’s proof

I will finish by saying something about the computations. They
depend on the following result of Wilcox:

Theorem
Let H be a subgroup of a finite group G. Suppose that
I H has a complete mapping;
I there are bijections Φ, Ψ on the set D of double cosets HxH of H

in G such that, for all D ∈ D, Ψ(D) ⊆ DΦ(D).
Then G has a complete mapping.
In particular, if there is a set of double coset representatives for
H in G such that all (except possibly the representative of H)
have order 3, then Wilcox’s theorem applies, with Φ(D) = D
and Ψ(D) = D−1. (For, if t3 = 1, then t−1 = t2 ∈ HtHtH.)



The group G = J4 has order around 1020. The smallest index of
a proper subgroup is more than 108: rather large for the usual
permutation group computations!
Several things work in our favour:
I J4 has a matrix representation of degree 112 over the field

of two elements, small enough for explicit calculations
with elements;

I there is a permutation representation (on the set of 2A
involutions) with degree a few billion, but if we identify
the points with involutions, there are four dimensions of
related subspaces in the 112-dimensional module which
give complete invariants for the orbits on pairs (the orbital
graphs);



I the rank of the permutation representation is 20; the two
collapsed adjacency matrices for the orbital graphs of
smallest degree can be calculated, and generate the entire
adjacency algebra.

From the collapsed adjacency matrices we can verify Wilcox’s
hypothesis. But at an even earlier stage in the computation,
double coset representatives are found which are all (except the
identity) conjugates of a particular element of order 3.


