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The lectures

In the course of these lectures, I will speak about four
remarkable objects:
I the Erdős–Rényi random graph, aka the Rado graph;
I the rational numbers (as ordered set);
I the Urysohn metric space;
I the pseudo-arc.

Although these objects are four individuals, there are various
general theories that connect them, and I will speak about some
of these:
I countably categorical structures;
I homogeneous structures and Fraı̈ssé’s Theorem;
I Ramsey classes and extreme amenability;
I inverse limits and the dual of Fraı̈ssé’s Theorem.



Finite random graphs
I think that highly symmetric objects are the most interesting,
like the Petersen graph:
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We choose a random graph on a given vertex set as follows: for
each pair or vertices, decide independently whether to join
them by an edge or not (for example, by the toss of a coin).
It turns out that the probability that the random graph on n
vertices has any non-trivial automorphisms tends very rapidly
to zero as n→ ∞.
So beautiful finite objects like the Petersen graph are rare . . .



The countable random graph

But a “phase shift” occurs when we go to the countably infinite.
In 1963, Erdős and Rényi showed that the random graph on a
countable set of vertices has infinitely many automorphisms
with probability 1.
The reason is even more extraordinary:

Theorem
There exists a graph R with the property that, if a countable random
graph X is chosen at random, then with probability 1, X is isomorphic
to R.
So there is only one countable random graph!
The graph R is the first of the four “precious jewels” of my title.
I will show you the proof.



Graphs and induced subgraphs

A graph consists of a set of vertices and a set of edges joining
pairs of vertices; no loops, multiple edges, or directed edges are
allowed.
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An induced subgraph of a graph consists of a subset of the
vertex set together with all edges contained in the subset. In
other words we are not allowed to delete edges within our
chosen vertex set.



Alice’s restaurant
The proof depends on the following property:

Given two finite disjoint sets U and V of vertices, there is a
vertex z which is joined to every vertex in U and to no
vertex in V.
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The point z is called a witness for the sets U and V. This is
called the Alice’s Restaurant property, or AR for short, after the
song by Arlo Guthrie:

You can get anything you want
At Alice’s restaurant.



The proof

I will show two things, which together give the proof.
Fact 1. With probability 1, a random countable graph has AR.
Fact 2. Any two countable graphs satisfying AR are isomorphic.

To prove Fact 1, we use from measure theory the fact that a
countable union of null sets is null. Since there are only
countably many choices for the (finite disjoint) sets U and V, it
suffices to show that for a fixed choice of U and V the
probability that no witness z exists is 0.
Suppose that |U ∪V| = n. Then the probability that a given
vertex z is not the required witness is 1− 1

2n .
Since all edges are independent, the probability that none of
z1, z2, . . . , zN is the required witness is

(
1− 1

2n

)N
, which tends to

0 as N → ∞.
So the event that no witness exists has probability 0, as
required.



Proof of Fact 2

We use a method known to logicians as “back and forth”.
Suppose that Γ1 and Γ2 are countable graphs satisfying AR:
enumerate their vertex sets as (a0, a1, . . .) and (b0, b1, . . .). We
build an isomorphism φ between them in stages.
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At stage 0, map a0 to b0.
At even-numbered stages, let am the first unmapped ai. Let U′

and V′ be its neighbours and non-neighbours among the
vertices alreay mapped, and let U and V be their images under
φ. Use AR in graph Γ2 to find a witness z for U and V. Then
map am to z.



Fact 2, continued

At odd-numbered stages, go in the other direction, using AR in
Γ1 to choose a pre-image of the first unmapped vertex in Γ2.
This approach guarantees that every vertex of Γ1 occurs in the
domain, and every vertex of Γ2 in the range, of φ; so we have
constructed an isomorphism.
The proof is finished. This is a fine example of a
non-constructive existence proof: if almost all graphs have the
property, then certainly a graph with the property exists. Erdős
and Rényi didn’t bother with an explicit construction.
Had we only gone “forward”, we would only use property AR
in Γ2, and we would have constructed an embedding, but could
not guarantee that it is onto.



Properties of R

Recall that a countable graph Γ is universal if every finite or
countable graph can be embedded into Γ as induced subgraph.

Fact 3. R is universal (for finite and countable graphs).

To see this, revisit the back-and-forth “machine” but use it only
in the forward direction. As we saw, this only requires AR to
hold in Γ2, and delivers an embedding of Γ1 in Γ2.

A graph Γ is homogeneous if every isomorphism between finite
induced subgraphs of Γ can be extended to an automorphism
of Γ. (This is a very strong symmetry condition: it immediately
implies that Γ is vertex-transitive, arc-transitive, etc.)

Fact 4. R is homogeneous.

To see this, take Γ1 = Γ2 = R, and start the back-and-forth
machine from the given finite isomorphism φ0; the result is an
automorphism of R extending φ0.



Rado’s construction

In 1964, about the same time as Erdős and Rényi, Richard Rado
gave the following construction. (I don’t think that Rado knew
what Erdős and Rényi were doing, or vice versa.)
The vertex set of Rado’s graph R is the set N of natural
numbers (including 0).
Given two vertices x and y, with x < y, we join x to y if, when y
is written in base 2, its x-th digit is 1 – in other words, if we
write y as a sum of distinct powers of 2, one of these is 2x.
Don’t forget that the graph is undirected! Thus
I 0 is joined to all odd numbers;
I 1 is joined to 0 and to all numbers congruent to 2 or 3

(mod 4).
I . . .

Rado’s graph is indeed an example of the random graph. To
prove this, we have to verify AR. Given U and V, choose
m > max{U ∪V} and put z = ∑u∈U 2u + 2m.



A number-theoretic construction

Since the prime numbers are “random”, we should be able to
use them to construct the random graph. Here’s how.
Recall that, if p is an odd prime not dividing a, then a is a
quadratic residue (mod p) if the congruence a ≡ x2 (mod p)
has a solution, and a quadratic non-residue otherwise. A
special case of the law of quadratic reciprocity, due to Gauss,
asserts that if the primes p and q are congruent to 1 (mod 4),
then p is a quadratic residue (mod q) if and only if q is a
quadratic residue (mod p).
So we can construct a graph whose vertices are all the prime
numbers congruent to 1 (mod 4), with p and q joined if and
only if p is a quadratic residue (mod q): the law of quadratic
reciprocity guarantees that the edges are undirected.



This graph is isomorphic to the random graph!
To show this we have to verify AR. So let U and V be finite
disjoint sets of primes congruent to 1 (mod 4). For each ui ∈ U
let ai be a fixed quadratic residue (mod ui); for each vj ∈ V, let bj
be a fixed quadratic non-residue mod vj.
By the Chinese Remainder Theorem, the simultaneous
congruences
I z ≡ ai (mod ui) for all ui ∈ U,
I z ≡ bj (mod vj) for all vj ∈ V,
I z ≡ 1 (mod 4),

have a solution modulo 4 ∏ ui ∏ vj. By Dirichlet’s Theorem, this
congruence class contains a prime, which is the required
witness.



The Skolem paradox

The downward Löwenheim–Skolem theorem of model theory
says that a consistent theory in a countable first-order language
has a countable model. (More about first-order logic coming up
soon.)
The Skolem paradox is this: There is a theorem of set theory
(for example, as axiomatised by the Zermelo–Fraenkel axioms)
which asserts the existence of uncountable sets. Assuming that
ZF is consistent (as we all believe!), how can this theory have a
countable model?
My point here is not to resolve this paradox, but to use it
constructively.



A set-theoretic construction

Let M be a countable model of the Zermelo–Fraenkel axioms
for set theory. Then M consists of a collection of things called
“sets”, with a single binary relation ∈, the “membership
relation”.
Form a graph on the set M by joining x and y if either x ∈ y or
y ∈ x.
This graph turns out to be the random graph!
Indeed, the precise form of the axioms is not so important. We
need a few basic axioms (Empty Set, Pairing, Union) and,
crucially, the Axiom of Foundation, and that is all. It does not
matter, for example, whether or not the Axiom of Choice holds.
(The Axiom of Foundation forbids infinite descending chains
· · · x2 ∈ x1 ∈ x0 under the membership relation.)



Back to Rado’s graph

In the set-theoretic construction, it doesn’t matter whether the
Axiom of Infinity holds or not.
There is a simple description of a model of set theory in which
the negation of the axiom of infinity holds (called hereditarily
finite set theory). In this theory, all sets are finite, all their
subsets are finite, and so on.
We represent sets by natural numbers. We encode a finite set
{a1, . . . , ar} of natural numbers by the natural number
2a1 + · · ·+ 2ar . (So, for example, 0 encodes the empty set.)
When we apply the construction of “symmetrising the
membership relation” to this model, we obtain exactly Rado’s
description of his graph!



Group-theoretic properties

Here are some properties of the graph R and its automorphism
group.

I Aut(R) has cardinality 2ℵ0 .
I Aut(R) is simple.
I Aut(R) has the strong small index property: this means

that any subgroup of this group with index strictly smaller
than 2ℵ0 lies between the pointwise and setwise stabilisers
of a finite set.

I As a consequence, any graph Γ on fewer than 2ℵ0 vertices
satisfying Aut(Γ) ∼= Aut(R) is isomorphic to R.

I All cycle structures of automorphisms of R are known.
I R is a Cayley graph for a wide class of countable groups,

including all countable abelian groups of infinite exponent.
For these groups, a “random Cayley graph” is isomorphic
to R with probability 1.



First-order logic
My treatment of first-order logic will be rather brief. It
describes structures, one of which is a set (called the domain)
equipped with functions or operations, relations, and constants;
typical examples are groups, graphs, ordered fields, . . .
Each function, relation or constant is represented by a symbol
in the language of the logic, which also has variables,
connectives, and quantifiers. We are only allowed finite
conjunctions, disjunctions and quantifications, and we are only
allowed to quantify over the domain, not over subsets or
functions. (Higher-order logics remove some of these
restrictions.)
A variable is free if it is not quantified; a sentence is a formula
with no free variables. Examples include
I (∀x)(∀y)(∀z)(x ◦ (y ◦ z)) = ((x ◦ y) ◦ z) (the associative

law);
I (∀x)(∀y)((x ∼ y) ∨ (∃z)((x ∼ z) ∧ (y ∼ z))) (stating that a

graph has diameter 2).



Categoricity

Imagine that we are trying to write sentences which are axioms
for some theory. Can we specify a structure completely by
first-order sentences?
It follows from the Löwenheim–Skolem theorems that, if an
infinite structure satisfies a collection of sentences, then there
are arbitrarily large structures satisfying them. So we cannot
specify cardinality!
So we compromise as follows. If α is an infinite cardinal
number, we say that a set of sentences is α-categorical if any
two structures of cardinality α satisfying them are isomorphic.
A theorem of Morley asserts that, for countable first-order
languages, there are only two kinds of cardinality, countable
and uncountable: if α and β are uncountable cardinals, then
α-categorical is equivalent to β-categorical.
If a set of sentences is α-categorical, we also describe the unique
countable structure satisfying it as being α-categorical.



The Engeler–Ryll-Nardzewski–Svenonius Theorem

A permutation group G on an infinite set Ω is oligomorphic if it
has only finitely many orbits on Ωn for all n. (This is a very
strong symmetry condition.)
The theorem of Engeler, Ryll-Nardzewski and Svenonius
(proved independently by them in 1959) asserts a remarkable
equivalence between categoricity and symmetry:

Theorem
A countable first-order structure is countably categorical if and only
if its automorphism group is oligomorphic.



The random graph

The random graph is countably categorical. The Alice’s
Restaurant property which characterises it can be expressed as
a set of first-order sentences. For example, the case |U| = 2,
|V| = 1 can be written (slightly abbreviated) as

(∀u1)(∀u2)(∀v) ((u1 6= v 6= u2 6= u1)⇒
(∃z)(z ∼ u1) ∧ (z ∼ u2) ∧ (z 6∼ v)).

The automorphism group of the random graph is
oligomorphic. For two n-tuples of distinct points lie in the same
orbit if and only if the (labelled) subgraphs they induce are
isomorphic. So the number of orbits on such tuples is equal to
2n(n−1)/2, the number of labelled graphs on n vertices.
So the random graph illustrates the theorem.


