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P. S. Urysohn

Pavel Urysohn, a member of the famous Lusitania group at
Moscow State University led by Egorov and Lusin, produced
fundamental results in topology in the early days of this
subject.
You may well have met in a course on topology some of his
results:
I Urysohn’s lemma: If any two disjoint closed sets A and B

in a topological space have disjoint open neighbourhoods,
then for any two such sets there is a continuous real
function f with f (A) = 0, f (B) = 1.

I Urysohn’s metrization theorem: A normal Hausdorff space
which has a countable basis of open sets is metrizable.

I He also produced one of the first dimension theories for
topological spaces.



Urysohn and Alexandrov in 1924

In 1924 Urysohn and P. S. Alexandrov came to western Europe
to meet mathematicians such as Hilbert, Brouwer and
Hausdorff. They went for a holiday to Batz-sur-Mer in
southwest France where they swam in the sea every day. On 17
August there was a storm; Alexandrov survived, Urysohn did
not. He was 26.
Alexandrov and Brouwer constructed a paper from Urysohn’s
notes; this was published in 1925, and is the result I intend to
talk about here.
I learned of this result from Anatoly Vershik at the European
Congress of Mathematics in Barcelona in 2000.



Fréchet’s question; Urysohn’s answer
A metric space is complete if every Cauchy sequence
converges, and is separable if it has a countable dense subset.
Fréchet showed in 1914 that every separable metric space is
isometrically embeddable in the space l∞ of bounded real
sequences with the supremum norm. But this space is not itself
separable. Fréchet asked for a separable example. Urysohn
showed:

Theorem
There exists a complete separable metric space U with the properties
I it is universal: every separable metric space can be embedded

into U;
I it is homogeneous: any isometry between finite subspaces of U

can be extended to a self-isometry of U.
Moreover, this space is unique up to isometry.
We have seen properties like these before, for R and (Q,<).
Urysohn’s proof foreshadowed Fraı̈ssé’s theoreom a quarter of
a century later, with an extra twist.



The proof
A metric space is a relational structure, with one binary relation
for each distance.
First we observe that finite metric spaces have the
amalgamation property. Suppose that B1 and B2 have a
common subspace A. Without loss we can assume that
B1 = A∪ {b1} and B2 = A∪ {b2}. To form the amalgam, we
have to assign a distance d(b1, b2) without violating the triangle
inequality.
We must have

|d(a, b1)− d(a, b2)| ≤ d(b1, b2) ≤ d(a′, b1) + d(a′, b2)

for any a, a′ ∈ A. This could only fail if, without loss of
generality,

d(a, b1)− d(a′, b1) > d(a, b2) + d(a′, b2),

which is impossible since

d(a, b1)− d(a′, b1) ≤ d(a, a′) ≤ d(a′, b2) + d(a′, b2).



Even though we have shown the “difficult” one of Fraı̈ssé’s
four conditions, we cannot apply his theorem, since the third
condition fails. There are uncountably many non-isometric
two-point metric spaces!
So instead we take CQ to be the class of finite rational metric
spaces (those with all distances rational). Then CQ is a Fraı̈ssé
class. Let UQ be its Fraı̈ssé limit. (This is the so-called rational
Urysohn space.
Now take the completion of UQ, in the usual way (Cauchy
sequences modulo null sequences); this is the Urysohn space U.



Some properties

Like the random graph, the Urysohn space has many
remarkable properties.

1. It is in a rather general sense the “random” complete
separable metric space. The proof of the AP for metric
spaces shows that, when we are building a finite metric
space one point at a time, the distances of the new point
from the existing ones are constrained (by the triangle
inequality) to a bounded region of Euclidean space. Now
Vershik showed that if we choose the distances at random
from a wide variety of probability distributions (e.g.
Gaussian) on Euclidean space, and take the completion of
the resulting infinite space, we obtain the Urysohn space
almost surely.

2. One can use Baire category instead of measure here; the
Urysohn space is “generic” in the class of Polish spaces. (I
will say more about Baire category in the next lecture.)



Variations

We can vary the construction. Take CZ to be the class of finite
integral metric spaces (with all distances integral). This is a
Fraı̈ssé class. Its Fraı̈ssé limit has the property that the metric is
the distance in the graph in which two points are joined if their
distance is 1. No completion is necessary; UZ is an infinite
distance-transitive graph.
Alternatively, take C1,2 to be the class of finite metric spaces
with all distances 1 or 2. The Fraı̈ssé limit again is a graph; this
time, it is the random graph R.



Other results

The approach has been useful in other respects.
For example, various methods have been produced to construct
and study subgroups of groups like the automorphism group
of the random graph. These methods can be modified so as to
apply to the isometry group of the rational Urysohn space, and
then extended to Urysohn space by topological techniques.
Here is an example, due to Vershik and me.

Theorem
Urysohn space admits an isometry of infinite order, all of whose orbits
are dense in the space.
In particular, the closure of this isometry in the isometry group
of U (in the weak topology) is an abelian group transitive on
U. So U has an abelian group structure (indeed, many different
abelian group structures).
No complete description of the abelian group structures on U

is yet available.



A further example

In the same paper, we showed that the group of bounded
isometries of U (those for which the distance from a point to its
image is bounded) is a proper normal subgroup of the isometry
group, which is dense in the full isometry group.
Using this, and a trick due to Jacques Tits, we construct an
action of the free group of countable rank as a dense subgroup
of the isometry group.
Much more is surely possible, based on similar results for the
random graph.



Ramsey’s Theorem

For the rest of this lecture, I will discuss a connection between
Ramsey theory and topological dynamics. The first three of our
precious jewels all have a part to play in this story.

Theorem (Finite Ramsey theorem)

Let k, l, r be given natural numbers with k ≤ l. Then there exists n
such that, if |X| ≥ n and the k-element subsets of X are coloured with
r different colours, then there exists an l-element subset Y of X, all of
whose k-element subsets have the same colour.
Such a set Y is said to be monochromatic. The smallest n is the
Ramsey number R(k, l, r).
You have probably met the “party problem”: given six people
at a party, either three are mutual friends or three are mutual
strangers. This is the statement that R(2, 3, 2) = 6.



Classes of structures

The theorem is important in many fields of mathematics. For
example, Paris and Harrington showed that a slight variant of
it is true but unprovable in Peano arithmetic. But we will go in
a different direction.
In general we replace finite sets by members of a class C of

relational structures. As notation, we use
(

B
A

)
for the set of

embedded copies of the structure A into the structure B.
For technical reasons, we often assume that our structures are
rigid. In practice this is achieved by considering them to be
labelled, that is, the point set of an n-element structure to be
{1, 2, . . . , n}. Said otherwise, the language of the structures
always includes a distinguished total order. This implies that

any element of
(

B
A

)
is the image of a unique embedding of A

into B.



Ramsey classes

A class C of structures as above is a Ramsey class if, given any
two structures A, B ∈ C, there is a structure C ∈ C with the

property that, for every r-colouring of
(

C
A

)
with r colours,

there exists B′ ∈
(

C
B

)
such that

(
B′

A

)
is monochromatic.

The question is: Which classes of finite structures are Ramsey
classes?
It can be shown that a the structures in a non-trival Ramsey
class must be rigid (as noted earlier).
It is convenient if Ramsey classes are required to be
isomorphism-closed and hereditary (closed under taking
substructures).



Example and non-example

The classical Ramsey theorem, together with the fact that there
is a unique linear order on a finite set (up to isomorphism),
shows that the class of all finite linear orders is a Ramsey class.
Let C be the class of finite directed graphs; let A be a single
edge, and B a cyclically directed triangle.
Given any directed graph C, with a linear order on the vertices,
colour an edge of C red if its direction agrees with the order,
and blue otherwise. No embedded cyclic triangle is
monochromatic!



Ramsey classes are Fräıssé classes

In 1989, Jarik Nešetřil showed, under mild assumptions, that
an isomorphism-closed hereditary Ramsey class has the
amalgamation property, and so (if it has only countably many
non-isomorphic members) is a Fraı̈ssé class.
He suggested a classification scheme, as follows. Classify the
homogeneous structures; then investigate which ones have
ages which are Ramsey classes.
A number of Ramsey classes have been found in this way: for
example, graphs (with linear order); Kn-free graphs (with linear
order); permutation patterns; metric spaces (with linear order).



Relations and functions

It is possible to extend the arguments to show that various
classes of finite ordered first-order structures (including
functions as well as relations) are Ramsey classes.
Examples include various classes of Steiner systems and
resolvable designs, as well as enrichments of other graph
classes such as bowtie-free graphs.
I refer to the nice article by Jan Hubička and Jaroslav Nešetřil in
Connections in Discrete Mathematics: A Celebration of the Work of
Ron Graham, recently published by Cambridge University
Press, for further details.



Topological dynamics

Let G be a locally compact Hausdorff topological group.
A flow for G is a continuous action of G by homeomorphisms
on a compact topological space X.
A flow is minimal if there is no proper subspace of X invariant
under G.
A minimal flow is universal if there is a G-map from X to any
minimal flow for G.
It can be shown that minimal flows always exist.
A topological group G is extremely amenable if any continuous
action of G on a compact space has a fixed point. In other
words, the universal minimal flow for G consists of a single
fixed point.



Extreme amenability

Various examples of extremely amenable groups had been
found among classical examples of topological groups. But in
2005, Kechris, Pestov and Todorcević (KPT) showed a
remarkable result:

Theorem (KPT theorem)

A proper closed subgroup G of Sym(X) is extremely amenable if and
only if G is the automorphism group of a homogeneous structure
whose age is a Ramsey class.
This theory allows information to be transferred both ways
between Ramsey theory and topological dynamics. In
particular, our examples above of Ramsey classes give rise to
extremely amenable groups (the automorphism groups of the
Fraı̈ssé classes).



Rigidity

There are other ways of making a class of structures rigid than
imposing a total order. However, with the KPT theorem, we
can explain why this way of doing it must be used.
Let G be a closed subgroup of Sym(X), where X is countable.
Consider the set O(X) of total orders on X.
It is easy to show that O(X) is compact, and clearly G acts on it.
So, if G is extremely amenable, then it must preserve a total
order on X.
Thus in particular, if C is a non-trivial Ramsey class, then the
Fraı̈ssé limit is totally ordered, so the elements of C must
themselves be totally ordered.



Other minimal flows

Similar methods can be used to understand the minimal flows
for other closed subgroups of Sn. For example:

Theorem (Glasner–Weiss)

Let X be a countable set. Then the minimal flow for Sym(X) is its
action on the set O(X) of all total orderings on X.
Note that O(X) is the closure of the set of dense orderings
without endpoints; these form a single orbit of Sym(X), by
Cantor’s theorem.


