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The unit interval

In a metric space, a continuum is a closed connected subspace.
The unit interval has a strong “homogeneity property”:

Any two continua in the unit interval, apart from single
points, are homeomorphic.

For, by elementary properties of IR, a closed and connected
subset of [0, 1] must be a closed interval.

What happens for higher-dimensional spaces like the unit
square? A moment’s thought shows that the unit square
contains more than one continuum (up to homeomorphism), so
tirst we must develop a notion of “almost all”.



Baire category

This is provided by Baire category. A subset of a metric space is
said to be residual if it contains a countable intersection of
dense open sets.

Theorem (Baire category theorem)

In a complete metric space, a residual subset is non-empty.

Residual sets in complete metric spaces play a similar role to
sets of full measure in probability spaces. For example,

> a countable intersection of residual sets is non-empty;

> aresidual set has non-empty intersection with every open
set.



An example

Consider the infinite binary tree, whose vertices consist of all
finite strings of zeros and ones, where the two descendants of
vertex v are the vertices v0 and v1 obtained by adding one extra
digit to the string.

The infinite paths from the root in this tree are labelled by
infinite binary strings. We can define a metric on the set of such
paths by the rule that d(s, t) = 27% if s and ¢ differ first in
position k.

Now it can be shown that a set S of infinite paths is

» open if and only if it is finitely determined, that is, for any
s € S, there is a vertex v on s such that all infinite paths
containing v belong to S;

» dense if and only if it is always reachable, that is, for any
vertex v, there is a path in S passing through v.

This gives a combinatorial description of the residual sets.



The random graph

Let X be a countably infinite set. Enumerate the 2-element
subsets of S as po, p1, p2, - ... Now any graph on the vertex set S
is represented by an infinite sequence s of zeros and ones (with
s; = 1 if and only if p; is an edge of the graph).

Recall the Alice’s restaurant property AR: for any finite disjoint
sets U and V, there is a vertex z joined to everything in U and
nothing in V.

For fixed U and V, this property is finitely determined (since its
truth is determined by the status of pairs {x,z} forx € UU V)
and always reachable (since after any finite number of choices,
we can find a vertex z about which no decisions have been
made, and add edges and non-edges so that z is a witness for
uuv).

So the random graph is residual. As residual sets are
non-empty, this shows its existence. This topological
(non-constructive) existence proof complements the
measure-theoretic proof by Erdés and Rényi.



Hausdorff metric

To apply this to our current question, we need to make the
compact subsets of the unit square (or, indeed, any metric space
M) into a metric space. We use the Hausdorff metric: two sets
are close if every point of one is close to a point of the other.
Formally, for subsets X and Y, we define

dy(X,Y) = max{sup inf d(x,y), sup 1nf d(x v)}.
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This has many nice properties:
» the restriction of dy to the set F(M) of all compact subsets
of M is a metric;

» the induced topology on F(M) depends only on the
topology of M, not on the metric d;

» if M is complete, then so is F(M).



The pseudo-arc

In 1920, Knaster and Kuratowski asked whether any
continuum in IR? which is “homogeneous” (admits a transitive
homeomorphism group) is necessarily a Jordan curve.

In 1922, Knaster constructed a continuum in the plane which is
hereditarily indecomposable (that is, no subcontinuum is the
union of two disjoint continua).

In 1948, Moise showed that Knaster’s continuum is
homeomorphic to any of its subcontinua. He named this
structure the pseudo-arc. (As we have seen, the unit interval,
and so any arc, has this property.)

In 1951 Bing showed that, up to homeomorphism, there is a
unique space with the above properties. Bing also showed that
the pseudo-arc is homogeneous. Furthermore, it is residual in
the space of compact subspaces of the unit square, the unit
hypercube in any number of dimensions, or the Hilbert cube.



Another view of the pseudo-arc

The pseudo-arc is clearly a mathematical jewel. But what does
it have to do with the theme of these lectures?

In 2006, Irwin and Solecki gave a new construction of the
pseudo-arc, using a result related to Fraissé’s Theorem. This
was used by Solecki and Tsankov in 2015 to give a new proof of
Bing’s result that the pseudo-arc admits a transitive group of
homeomorphismes.

These ideas have been recently developed in several places,
and I hope that they will be useful in much wider contexts.



Cantor space

The famous Cantor set is given by the middle third
construction, starting with the unit interval, and successively
removing the middle third from each interval.

We can represent an interval after the kth step as a binary string
of length k, where 0 means ‘take the left-hand interval” and 1
means ‘take the right-hand interval’.

Alternatively, the intervals at the nth step are the paths in the
complete binary tree of height n.

So points in the Cantor space are represented by infinite binary
sequences, or paths in the binary tree. The induced topology as
subspace of the unit interval coincides with the topology from
the metric defined earlier.



Cantor space and unit interval

The Cantor space is a subspace of [0, 1]. Both have cardinality
2%, but their topologies are very different.
However, we have a map between them which is almost a
bijection: regard an infinite binary sequence (eg, €1, €2, ...) as a
‘binary decimal’ 0.eje0e3 - - - .
The map just defined is bijective except on a countable set
consisting of sequences which are constant (0 or 1) after some
point:

0.6182 cee €k0111 e = 0.6182 cee €k1000 e

So the unit interval can be obtained as a quotient of Cantor
space, by identifying pairs of the above form.



A combinatorial version

We can produce the above identification another way.
We have a natural ordering on the points of the nth
approximation: lexicographic order on the binary sequences, or
depth-first search order on the paths in the tree. Let us call two
points neighbours if they are equal or adjacent in this order.
What relation is induced on Cantor space by the neighbour
relation? In other words, when do two infinite binary
sequences have the property that their truncations to length n
are neighbours for all n? It is easy to see that this holds if and
only if either the infinite sequences are equal, or they have the
form

erep - - -e0111--- and eqep - - - €,1000- - -,

in other words, if and only if they represent the same point of
the unit interval.



So the neighbour relation on Cantor space is an equivalence
relation with equivalence classes of sizes 1 and 2, and the
quotient is the unit interval.

The points of the unit interval which come from classes of size
2 are the 2-adic rationals. But notice that, after the
identification, we can no longer recognise these points; the
group of self-homeomorphisms of [0, 1] is transitive on the set
of all interior points.



Projective limits

The amalgamation property of a class C can be regarded as a
commutative square or pushout in the category whose objects
are the elements of C and and whose morphisms are injective
homomorphisms.
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A category theorist would certainly ask, “What happens if you
dualise by turning the arrows around?” We would replace
embeddings (injective homomorphisms) by projections
(surjective homomorphisms).



Inverse limits

Let {0,1}" denote the set of words of length 1 over the alphabet
{0,1}.

If i < j, we have a projection 71j,; from {0,1}/ to {0,1}, by
simply deleting the last j — i entries. If i < j < k, then

7Tk,j ¢} 71']',1' = Tlk,j-

This is called an inverse system. Its inverse limit is an object L
with projections ¢; : L — {0, 1} for all i such that, fori < j,

(P] o T = ¢;.

Clearly the inverse limit is the set of all binary sequences, and
the map ¢; removes all but the first i entries in a sequence.
Thus, Cantor space is the inverse limit of the system of finite
binary words and projections 71;; defined above.



Projective amalgamation property

We would be looking at the following diagram, where
morphisms are surjective homomorphisms:
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If, for any A, By, B, € C and epimorphisms f; : A — B; for

i = 1,2, there exists C € C and epimorphisms g; : B; = C such
that the diagram commutes, then we say that C has the
projective amalgamation property.



Projective Fraissé classes

We say that a class C of finite structures is a projective Fraissé
class, or dual Fraissé class, if it has the following properties:

» ( is closed under isomorphism.
» (is closed under taking epimorphic images.
» (C contains only countably many non-isomorphic members.

» For any By, B, € C, there exists C € C which projects onto
both of them.

» ( has the projective amalgamation property.

The fourth condition is the dual of the joint embedding
property. We managed to avoid the JEP in Fraissé’s Theorem
by assuming that the empty set embeds into any structure. But
no non-empty structure projects onto the empty set, so we need
to state it separately here.



The projective Fraissé theorem

Irwin and Solecki proved the following.

Theorem

Let C be a projective Fraissé class. Then there is a structure M with
the properties that C is the set of all finite projections (epimorphic
images) of M, and if 111, 1o : M — A are projections to A € C, then
there is an automorphism g of M such that g o 1y = 7. The
structure M is unique up to isomorphism.

The structure M is the projective Fraissé limit of the class C.



Back to the pseudo-arc

A loopy path is a graph which consists of a finite path with a
loop at each vertex.

Irwin and Solecki showed that the class of loopy paths is a
projective Fraissé class.

The graph structure of its projective Fraissé limit M is rather
straightforward: it consists of uncountably many components
which consist of a single vertex with a loop, and countably
many which consist of a loopy path of length 2.

They showed that, if we use the profinite topology on M
(induced from the product topology of the discrete spaces on
members of C, and then factor out the equivalence relation
corresponding to the connected components, then the resulting
space is the pseudo-arc.



Homogeneity

As noted, in this area the term “homogeneous” just means that
the group of self-homeomorphisms acts transitively on the
points.

Using this approach, Solecki and Tsankov were able to give a
new proof of Bing’s result that the pseudo-arc is homogeneous.
As with Cantor space, once we factor out the equivalence
relation, the points which come from equivalence classes of
size 2 are no longer distinguished.

Are there any stronger transitivity conditions? Note that the
“projcetive homogeneity” in the Irwin-Solecki theorem does
not easily translate into the action on points of the space.

The homeomorphism group of the pseudo-arc is surely an
interesting group which deserves further study!



Other applications

Meanwhile, Dolinka and Masulovi¢ were also developing the
idea of injective and projective Fraissé limits with different
applications in mind.

One of their aims is an application of these ideas to universality
properties of the endomorphism monoids of (injective or
projective) Fraissé limits.

For more details, see the slides of Dolinka and Solecki at
http://www.maths.dur.ac.uk/lms/102/talks.html

(There are many other interesting sets of slides on this site!)


http://www.maths.dur.ac.uk/lms/102/talks.html

The end ...

That is the end of my story, though hopefully the beginning of
new research and collaboration.

for your attention!



