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Groups, semigroups, and graphs

Groups and semigroups are algebraic objects. A semigroup is a
set with a binary operation satisfying the associative law:

a ◦ (b ◦ c) = (a ◦ b) ◦ c;

a group is a semigroup which also satisfies the identity and
inverse laws:
I there is an element e such that e ◦ a = a ◦ e = a for all a;
I for any a, there exists b such that a ◦ b = b ◦ a = e.

A graph is a combinatorial object: it has a set of vertices, some
pairs of which are joined by (undirected) edges.



How strong are these conditions? The table gives the numbers
of objects, up to isomorphism.

Order 1 2 3 4 5 6 7 8 9
Groups 1 1 1 2 1 2 1 5 2

Semigroups 1 5 24 188 1915 28634 1627672 3684030417 105978177936292
Graphs 1 2 4 11 34 156 1044 12346 274668

We see that there are very few groups; these axioms are
extremely tight. It is a bit surprising how loose the structure of
semigroups is; there are many more semigroups than graphs.



Also a bit surprising: there is a formula for the number of
graphs (albeit a rather complicated formula involving a sum
over partitions of n), but no formula for groups or semigroups.
The number of semigroups is only known up to order 10; the
number of groups, up to order 2000. The number of groups
with orders up to 2000 was announced as a “millennium
project”. There are about 59.9 billion groups, of which about
59.5 billion have order 210 = 1024.
There are just two graphs on 2 vertices, namely an edge r r
and a nonedge r r .
If you have learned any group theory you will know that there
is only one group of order 2, the cyclic group (or integers
mod 2).



Semigroups of order 2

A semigroup is defined by a multiplication table, for example

◦ a b
a a a
b a b

(This one is the semigroup {0, 1} with the operation of
multiplication.)
There are 24 = 16 possible multiplication tables.

Exercise

I Show that, up to isomorphism (which means just swapping a
and b here) there are 10 different 2× 2 multiplication tables.

I Show that five of them are semigroups.



Graphs from groups

Can we construct one type of object from another, so as to learn
something about both types?
One method of forming a graph from a group G is to use a
joining rule which depends on the algebraic structure of the
group. One examples is the commuting graph: the vertices are
the elements of G, and x and y are joined if xy = yx.
There are other similar joining rules, which I won’t discuss
here.
The commuting graph is connected, since any two elements are
both joined to the identity (or to any element in the centre of G).
So, to make life more interesting, some people remove all
elements of the centre from the commuting graph.



Markov chains and random walks

A Markov chain is a system which has a number of states (here
always finite) and, at discrete time steps, jumps from one state
to another. The probability of jumping from state i to state j is
pij, and the matrix P with (i, j) entry pij is the transition matrix.
Note that its entries are non-negative and its row sums are 1; so
its greatest eigenvalue is 1.
An example of a Markov chain is the random walk on a graph
(possibly with loops); the states are the vertices, and at each
time step the process chooses a random neighbour and moves
there.



Theory of Markov chains

A Markov chain is irreducible if it is possible to move from any
state to any other; it is aperiodic if the greatest common divisor
of the possible return times to states is 1.

Theorem
If a Markov chain is irreducible and aperiodic, then it has a unique
limiting probability distribution on the set of states, which it
approaches as the number of steps tends to infinity.
A random walk is irreducible if the graph is connected, and
aperiodic if the graph is not bipartite (in particular, if it contains
loops).



Let P be the transition matrix of an irreducible aperiodic
Markov chain. The row sums are all 1, so the all-1 vector is a
right eigenvector with eigenvalue 1 (and this is the greatest
eigenvalue).
So there is also a left eigenvector with eigenvalue 1, say q. This
is a vector with positive entries; if we normalise it to have sum
1, it is the limiting distribution. For if the system is described
by this distribution, then after one time step the probability of
being in state j is

n

∑
i=1

qipij = qj,

the same as before the step. So this is a stationary state; by the
uniqueness it is the limiting state.
A very important question about a Markov chain is how
rapidly it approaches its limiting distribution, the so-called
mixing time.



Random walk on the commuting graph

It is a remarkable fact that the limiting distribution of the
random walk on the commuting graph of a group G is uniform
on conjugacy classes of G: that is, the probability of being at an
element x is inversely proportional to the size of the conjugacy
class containing x.

Exercise
Prove this. (Use the fact, from group theory, that the product of the
size of the conjugacy class of x and the number of elements which
commute with x is equal to |G|, independent of x.)

Problem
What can be said about the rate of convergence of this random walk?

Problem
What can you say about the random walk on the reduced commuting
graph?



Sylvester and the six nations

One of the most remarkable facts in mathematics is that the
symmetric group S6 has an outer automorphism (one not
induced by conjugation). For no other value, finite or infinite,
of n, is this the case.
Here is a very brief sketch, due essentially to Sylvester. Let A be
a set of size 6. As well as the six points of A, we consider
I the duads, or pairs of points of A (there are 15 of these);
I the synthemes, or partitions of A into three duads (there

are 15 of these);
I the synthematic totals, or partitions of the set of duads into

five synthemes (there are 6 of these).
If you are organising a rugby tournament involving six nations,
each pair playing once, the duads are the matches, the
synthemes the sets of matches that can be played in a single
weekend, and the synthematic totals the possible tournament
schedules over five weekends.



The outer automorphism of S6

Any permutation of A induces permutations of the sets of
duads, synthemes, and hence of the set X of synthematic totals;
so we have an isomorphism from the symmetric group on A to
the symmetric group on X which is not induced by a bijection
from A to X. This defines an outer automorphism of the
symmetric group Sym(A).
6 is the only number n for which, starting from a set of size n,
we can construct another set of size n which is invariant under
all permutations of the first set but not naturally bijective with
it.
In the language of “general nonsense”, 6 is the only number n
for which the category of n-element sets and bijections has a
non-trivial functor to itself.



The Sylvester graph

We make a graph on the vertex set A×X by joining (a, x) to
(b, y) if the duad {a, b} is a part of the intersection of the
synthematic totals x and y (these totals intersect in a unique
syntheme). This graph has valency 5, and has remarkable
properties.
Now consider the set of 48 subsets of size 6 (called “blocks”)
consisting of
I the six rows (sets {(a, x) : x ∈ X} for fixed a);
I the six columns (sets {(a, x) : a ∈ A} for fixed x);
I the 36 closed neighbourhoods, consisting of a vertex and

its five neighbours – these are called starfish (see next
slide).

This collection of subsets forms a block design. It has the
property that two points which are joined in the Sylvester
graph lie in two blocks, while any other pair of points are
contained in a unique block. This design is also remarkable.



Starfish
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We define a starfish to consist of a vertex and its neighbours; a
galaxy of starfish is the set of six starfish derived from the
vertices in a column of the array.



Sylvester designs

We define a Sylvester design to be a block design with 36 points
and 48 blocks of size 6 (the points being the vertices of the
Sylvester graph) such that two points lie in two blocks if they
are adjacent in the Sylvester graph, or one block otherwise.
The design described earlier is a Sylvester design, with
automorphism group of order 1440 (equal to the automorphism
group of S6). Two others are known, one with 144
automorphisms, and one with only the identity automorphism.

Problem
Find all Sylvester designs.
I suspect that this will require a big computation; but I would
be interested in knowing whether, up to isomorphism, the
number of such designs is closer to ten or to ten million.



Statistical properties

Statisticians have a variety of optimality criteria for block
designs. Very briefly, we form the concurrence matrix of the
design, whose (i, j) entry is the number of blocks containing i
and j for i 6= j, and whose diagonal entries are chosen so that
the row and column sums are zero. The most popular criteria
maximise functions of the non-zero eigenvalues of this matrix
(the harmonic mean, geometric mean, and minimal element in
the case of the so-called A, D and E criteria).
If a balanced design or 2-design exists (with all off-diagonal
entries equal), then it is optimal. In our case, this would be
(more or less) an affine plane of order 6, which is known not to
exist!

Problem
Prove that Sylvester designs are optimal in various senses (especially
the A criterion defined above).



Semigroups

Now I turn to semigroups.
There are several contenders for the role played by the
symmetric group S(Ω) in group theory:
I the full transformation semigroup T(Ω) consisting of all

maps from Ω into Ω;
I the partial transformation semigroup P(Ω) consisting of

all maps from a subset of Ω into Ω;
I the symmetric inverse semigroup I(Ω) consisting of all

bijections between subsets of Ω.
So there are theories of transformation semigroups, partial
transformation semigroups, and inverse semigroups,
corresponding to the theory of permutation groups in group
theory.
There are also various links between them . . .



Endomorphisms and partial isomorphisms

Given a finite group G, let End(G) be the semigroup of
endomorphisms of G, and PIso(G) the semigroup of partial
isomorphisms of G (isomorphisms between subgroups of G).
In the notation of the previous slide, End(G) ≤ P(Ω), while
PIso(G) ≤ I(Ω).

Theorem
If G is abelian, then |End(G)| = |PIso(G)|.
The proof uses the fact that an abelian group G has a dual G∗,
the group of characters of G, such that subgroups of G
correspond bijectively to quotients of G∗ and vice versa.

Exercise
Complete the proof of the theorem!



Problems

Problem
Is there a relation between End(G) and PIso(G), for G a finite
abelian group? (These semigroups are certainly not isomorphic!)
This problem has a linear analogue, where we replace G by a
vector space and ask for linear maps. The role of the character
group is taken by the dual space.

Problem
Does the converse hold? What can be said about groups where the left
hand side is larger (or smaller) than the right hand side?



The dungeon

You are in a dungeon consisting of a number of rooms.
Passages are marked with coloured arrows. Each room
contains a special door; in one room, the door leads to freedom,
but in all the others, to death. You have a map of the dungeon,
but you do not know where you are.
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You can check that (Blue, Red, Blue) takes you to room 1 no
matter where you start.



Automata

The diagram on the last page shows a finite-state deterministic
automaton. This is a machine with a finite set of states, and a
finite set of transitions, each transition being a map from the set
of states to itself. The machine starts in an arbitrary state, and
reads a word over an alphabet consisting of labels for the
transitions (Red and Blue in the example); each time it reads a
letter, it undergoes the corresponding transition.
A reset word is a word with the property that, if the automaton
reads this word, it arrives at the same state, independent of its
start state. An automaton which possesses a reset word is
called synchronizing.
Not every finite automaton has a reset word. For example, if
every transition is a permutation, then every word in the
transitions evaluates to a permutation. How do we recognise
when an automaton is synchronizing?



Automata and transformation semigroups

Combinatorially, an automaton is an edge-coloured digraph
with one edge of each colour out of each vertex. Vertices are
states, colours are transitions.
Algebraically, if Ω = {1, . . . , n} is the set of states, then any
transition is a map from Ω to itself. Reading a word composes
the corresponding maps, so the set of maps corresponding to
all words is a transformation semigroup on Ω.
So an automaton is a transformation semigroup with a
distinguished generating set.



Graph endomorphisms
Our graphs are simple (no directions, loops, or multiple edges).
The clique number ω(Γ) of a graph Γ is the number of vertices
in its largest complete subgraph, and the chromatic number
χ(Γ) is the smallest number of colours required for a
vertex-colouring so that adjacent vertices get different colours.
Let Γ and ∆ be graphs. A homomorphism from Γ to ∆ is a map
f from the vertex set of Γ to that of ∆ with the property that, for
any edge {v, w} of Γ, the image {vf , wf} is an edge of ∆.
An endomorphism of Γ is a homomorphism from Γ to itself.

Proposition

I A homomorphism from Km to Γ is an embedding of Km into Γ;
such a homomorphism exists if and only if ω(Γ) ≥ m.

I A homomorphism from Γ to Km is a proper colouring of Γ with m
colours; such a homomorphism exists if and only if χ(Γ) ≤ m.

I There are homomorphisms in both directions between Γ and Km
if and only if ω(Γ) = χ(Γ) = m.



The obstruction to synchronization

The endomorphisms of a graph Γ form a transformation
semigroup; if Γ is not a null graph, then End(Γ) is not
synchronizing, since edges cannot be collapsed.

Theorem
Let S be a transformation semigroup on Ω. Then S fails to be
synchronizing if and only if there exists a non-null graph Γ on the
vertex set Ω for which S ≤ End(Γ). Moreover, we may assume that
ω(Γ) = χ(Γ).

Proof.
Given a transformation semigroup S, we define a graph Γ in
which x and y are joined if and only if there is no element s ∈ S
with xs = ys. Show that S ≤ End(Γ), that Γ has equal clique
and chromatic number, and that S is synchronizing if and only
if Γ is null.



The probability of synchronization

It is known that, if we choose two random elements of T(Ω),
then with probability tending to 1 as |Ω| → ∞, they generate a
synchronizing semigroup. But the proof is not easy!
Here is a possible approach to a proof of this fact. If two
transformations do not generate a synchronizing semigroup,
then they must be contained in a maximal non-synchronizing
semigroup. This must be the semigroup of endomorphisms of
a graph.

Problem
Which graphs have the property that their endomorphism semigroups
are maximal non-synchronizing?
If we could solve this problem, we could in principle count the
pairs of transformations lying in such a semigroup.



Dixon’s theorem

The suggested proof above is based on a theorem of John
Dixon, proving a conjecture of Netto.

Theorem
Two random permutations on {1, . . . , n} generate the symmetric or
alternating group of degree n with probability tending to 1 as n→ ∞.
The proof goes like this. Once we know enough about the
maximal subgroups of the symmetric or alternating group, we
can do some counting to estimate the number of pairs of
permutations which lie together in some maximal subgroup
(these are precisely the ones not generating the whole group),
and divide by n! to get the required probability.



Other problems on synchronization

Problem

I The Černý conjecture asserts that if an n-state automaton is
synchronizing, it has a reset word of length at most (n− 1)2.
(This would be best possible, if true.) This conjecture has been
open for half a century, and although it looks attractive, it is very
hard!

I A permutation group cannot be synchronizing as a monoid. So
we abuse language by calling a group G synchronizing if the
semigroup generated by G and any non-permutation on Ω is
synchronizing. The problem is to find all the synchronizing
permutation groups. A substantial body of results exists about
this.

I What about synchronization in the infinite case?


