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The dungeon

You are in a dungeon consisting of a number of rooms. Each
room has two doors, coloured red and blue, which open into
passages leading to another room (maybe the same one). Each
room also contains a special door; in one room, the door leads
to freedom, but in all the others, to death. You have a map of
the dungeon, but you do not know where you are.
Can you escape? In other words, is there a sequence of colours
such that, if you use the doors in this sequence from any
starting point, you will end in a known place?
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You can check that (Blue, Red, Blue) takes you to room 1 no
matter where you start.



Automata

The diagram on the last page shows a finite-state deterministic
automaton. This is a machine with a finite set of states, and a
finite set of transitions, each transition being a map from the set
of states to itself. The machine starts in an arbitrary state, and
reads a word over an alphabet consisting of labels for the
transitions (Red and Blue in the example); each time it reads a
letter, it undergoes the corresponding transition.
A reset word is a word with the property that, if the automaton
reads this word, it arrives at the same state, independent of its
start state. An automaton which possesses a reset word is
called synchronizing.
Not every finite automaton has a reset word. For example, if
every transition is a permutation, then every word in the
transitions evaluates to a permutation. How do we recognise
when an automaton is synchronizing?



Automata and transformation monoids

Combinatorially, an automaton is an edge-coloured digraph
with one edge of each colour out of each vertex. Vertices are
states, colours are transitions.
Algebraically, if Ω = {1, . . . , n} is the set of states, then any
transition is a map from Ω to itself. Reading a word composes
the corresponding maps, so the set of maps corresponding to
all words is a transformation monoid on Ω.
So an automaton is a transformation monoid with a
distinguished generating set. It is synchronizing if it contains a
map with rank 1.



Graph endomorphisms
Our graphs are simple (no directions, loops, or multiple edges).
The clique number ω(Γ) of a graph Γ is the number of vertices
in its largest complete subgraph, and the chromatic number
χ(Γ) is the smallest number of colours required for a
vertex-colouring so that adjacent vertices get different colours.
Let Γ and ∆ be graphs. A homomorphism from Γ to ∆ is a map
f from the vertex set of Γ to that of ∆ with the property that, for
any edge {v, w} of Γ, the image {vf , wf} is an edge of ∆.
An endomorphism of Γ is a homomorphism from Γ to itself.

Proposition

I A homomorphism from Km to Γ is an embedding of Km into Γ;
such a homomorphism exists if and only if ω(Γ) ≥ m.

I A homomorphism from Γ to Km is a proper colouring of Γ with m
colours; such a homomorphism exists if and only if χ(Γ) ≤ m.

I There are homomorphisms in both directions between Γ and Km
if and only if ω(Γ) = χ(Γ) = m.



The obstruction to synchronization

The endomorphisms of a graph Γ form a transformation
monoid; if Γ is not a null graph, then End(Γ) is not
synchronizing, since edges cannot be collapsed.

Theorem
Let S be a transformation monoid on Ω. Then S fails to be
synchronizing if and only if there exists a non-null graph Γ on the
vertex set Ω for which S ≤ End(Γ). Moreover, we may assume that
ω(Γ) = χ(Γ).

Proof.
Given a transformation monoid S, we define a graph Gr(S) in
which x and y are joined if and only if there is no element s ∈ S
with xs = ys. Show that S ≤ End(Gr(S)), that Gr(S) has equal
clique and chromatic number, and that S is synchronizing if
and only if Gr(S) is null.



Synchronizing groups

A permutation group is never synchronizing as a monoid, since
no collapses at all occur.
We abuse language by making the following definition. A
permutation group G on Ω is synchronizing if, for any map f
on Ω which is not a permutation, the monoid 〈G, f 〉 generated
by G and f is synchronizing.

Theorem
A permutation group G on Ω is non-synchronizing if and only if
there exists a G-invariant graph Γ, not complete or null, which has
clique number equal to chromatic number.



Synchronization in the hierarchy

A permutation group G on Ω is primitive if it preserves no
non-trivial equivalence relation on Ω; it is 2-homogeneous if it
acts transitively on the 2-element subsets of Ω (equivalently, it
preserves no non-trivial graph on the vertex set Ω). (Here a
graph or equivalence relation is trivial if it is invariant under
the full symmetric group.)

Theorem
Let G be a permutation group of degree n > 2.
I If G is synchronizing, then it is primitive.
I If G is 2-homogeneous, then it is synchronizing.
I None of these implications reverses.



The O’Nan–Scott Theorem

Here is a simple form of the O’Nan–Scott theorem which is
adequate for our needs.

Theorem
Let G be a finite primitive permutation group on Ω. Then either
(a) G preserves a Cartesian structure on Ω; or
(b) G is affine, diagonal or almost simple.

I won’t give all definitions. But type (a) preserve a Hamming
graph, whose vertices are all words of length m over a finite
alphabet of length A, two vertices joined if they differ in just
one position.
This graph has clique number |A|: the set
{(x, a2, . . . , am) : x ∈ A} is a clique. It also has chromatic
number |A|: take A to be an abelian group, and give (a1, . . . , am)
the colour ∑ ai. So type (a) are non-synchronizing.



O’Nan–Scott types

Affine groups have abelian normal subgroups. They have the
form

{x 7→ xA + c : c ∈ V, A ∈ H},

where V is a finite vector space and H an irreducible linear
group on V. They may or may not be synchronizing.
Almost simple groups satisfy T ≤ G ≤ Aut(T), where T is a
non-abelian finite simple group. The action is not specified.
They may or may not be synchronizing.
Diagonal groups are more difficult to define, so we’ll approach
them circumspectly.



Counterexamples to a theorem of Cauchy

This was the wonderful title of a paper by Peter Neumann,
Charles Sims and James Wiegold in 1968.
Cauchy “proved” that a primitive permutation group whose
degree is one more than a prime must be doubly transitive.
Neumann, Sims and Wiegold noted that, if T is a finite simple
group, then the group induced on T by left and right
multiplication,

{(g, h) : x 7→ g−1xh}

is primitive. One can enlarge the group by adjoining
automorphisms of S (the inner automorphisms are already
included as the “diagonal” subgroup {(g, g) : g ∈ S}) and the
map x 7→ x−1. The result is the 2-factor diagonal group D(T, 2).
They noted that |A5| = 59 + 1, |PSL(2, 7)| = 167 + 1,
|A6| = 359 + 1, |PSL(2, 8)| = 503 + 1, |PSL(2, 11)| = 659 + 1,
. . . . (It is not known whether there are infinitely many
counterexamples.)



Latin squares

A Latin square of order n is an n× n array with entries taken
from an alphabet of size n, so that each letter in the alphabet
occurs once in each row and once in each column.

e a b c
a e c b
b c e a
c b a e

This is not just any old Latin square: it is the Cayley table, or
multiplication table, of the Klein group of order 4.



Latin square graphs

Given a Latin square L, we define a graph whose vertices are
the n2 cells of the square, two vertices adjacent if they lie in the
same row or the same column or contain the same symbol. This
is a Latin square graph.
If L is the Cayley table of a group T, the graph admits T3 (acting
on rows, columns and symbols), as well as automorphisms of T
and the symmetric group permuting the three types of object. If
T is simple, the group generated by all of these is primitive,
and is a three-factor diagonal group D(T, 3).
Latin square graphs are strongly regular, but almost all have
only the trivial group of automorphisms.



Transversals and orthogonal mates
A transversal is a set of cells, one in each row, one in each
column, and one containing each letter.

e a b c
a e c b
b c e a
c b a e

In this case we can partition the cells into transversals:

e a b c
a e c b
b c e a
c b a e

Regarding the colours as an alphabet we see a second Latin
square which is orthogonal to the first square, in the sense that
each combination of letter and colour occurs precisely once.



Not all Latin squares have transversals. Consider the following
square:

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Given a set of cells, one from each row and one from each
column, the sum of the row indices is 0 + 1 + 2 + 3 = 2
(mod 4). Similarly for the columns. Since each entry is the sum
of its row and column indices, the entries sum to 2 + 2 = 0
(mod 4). Thus the entries cannot be {0, 1, 2, 3}.
More generally, the Cayley table of a cyclic group of even order
has no transversal.



Complete mappings

Let G be a group. A complete mapping of G is a bijective map
φ : G→ G such that the map ψ defined by ψ(x) = xφ(x) is also
a bijection.
Given a transversal in the Cayley table of G, define φ and ψ by
the rule that φ(g) and ψ(g) are the column label and entry of
the transversal cell in row g. Then φ is a complete mapping as
above.
Also, if φ and ψ are as above, then the array with (g, h) entry
gψ(h) is a Latin square, which is an orthogonal mate for the
Cayley table.
Thus the following are equivalent:
I the Cayley table of G has a transversal;
I the Cayley table of G has an orthogonal mate;
I G has a complete mapping.



The Hall–Paige conjecture

In 1955, Marshall Hall Jr and Lowell J. Paige made the
following conjecture:

Conjecture

A finite group G has a complete mapping if and only if the Sylow
2-subgroups of G are trivial or non-cyclic.
They proved the necessity of their condition, and its sufficiency
in a number of cases, including soluble groups and symmetric
and alternating groups.
Hall was a well known group theorist and combinatorialist.
Paige was much less well known: he was a student of Richard
Bruck, had 6 students at UCLA, and has 18 papers (including
his thesis on neofields) listed on MathSciNet.



The Classification of Finite Simple Groups

The biggest theorem in mathematics states:

Theorem
A finite simple group is one of the following:
I a cyclic group of prime order;
I an alternating group An, n ≥ 5;
I a group of Lie type;
I a sporadic group (there are 26 of these).



Proof of the Hall–Paige conjecture

The Hall–Paige conjecture was proved in 2009 by Stuart
Wilcox, Anthony Evans, and John Bray.
Wilcox showed that its truth for all groups follows from its
truth for simple groups, and proved it for groups of Lie type,
except for the Tits group 2F4(2)′. (The first two types, cyclic and
alternating, are covered by Hall and Paige.)
Evans dealt with the Tits group and 25 of the 26 sporadic
groups.
Bray dealt with the final group, the Janko group J4.
The papers of Wilcox and Evans were published in the Journal
of Algebra in 2009. But Bray’s work has was not published at the
time.



Latin square graphs

Let L be a Latin square of order n, and Γ its Latin square graph.
For n > 2, this graph has clique number n: any row, column or
letter is a clique.
Also, the chromatic number is n if and only if A has an
orthogonal mate:

e a b c
a e c b
b c e a
c b a e



Three-factor diagonal groups

Recall the three classes of primitive groups not preserving a
Cartesian structure in the O’Nan–Scott theorem: affine,
diagonal and almost simple. We saw that 3-factor diagonal
groups are automorphism groups of the Latin square graphs
associated with Cayley tables of finite simple groups.

Proposition

The group D(T, 3) is non-synchronizing.

Proof.
By Burnside’s Transfer Theorem, a non-abelian simple group
cannot have cyclic Sylow 2-subgroups. So by Hall–Paige, the
Latin square graph of its Cayley table has clique number equal
to chromatic number.



Diagonal groups with more socle factors

I didn’t give you a definition of diagonal groups. But I did
show you the two- and three-factor diagonal groups. The
general case is an extension of this; the socle of a d-factor
diagonal group is the direct product of d copies of a
non-abelian finite simple group S, and it intersects the point
stabiliser in the diagonal subgroup of Sd. The full diagonal
group also contains the automorphism group of S, and the
symmetric group Sd permuting the socle factors.

Theorem
The diagonal group D(T, r) is non-synchronizing for r ≥ 3.
A paper including Bray’s final step in the proof of the
Hall–Paige conjecture and this application to synchronization is
to appear in the Sims memorial volume of the Journal of Algebra,
hopefully next year.



Permutation group properties

I now turn to another place where diagonal groups arose.
It is possible to define many permutation properties in a
uniform way. We say a structure on the set Ω is trivial if it is
invariant under the symmetric group on Ω.
Now a permutation group is
I transitive if it preserves no non-trivial subset of Ω;
I primitive if (it is transitive and) it preserves no non-trivial

partition of Ω;
I 2-homogeneous if it preserves no non-trivial (undirected)

graph on Ω;
I 2-transitive if it preserves no non-trivial digraph on Ω
I synchronizing if it preserves no non-trivial graph on Ω

with clique number equal to chromatic number.
You can take these as definitions; or, if you know other
definitions, check that these statements agree with them.



Coherent configurations

A coherent configuration on a set Ω is a partition of Ω×Ω into
classes whose relation matrices A1, . . . , Ar satisfy the following
conditions:
I A1 + · · ·+ Ar = J, the all-1 matrix;
I a subset of A1, . . . , Ar sums to the identity I;
I {A1, . . . , Ar} is closed under transposition;
I the span of {A1, . . . , Ar} over C is closed under

multiplication (that is, an algebra).
If G is a permutation group on Ω, then the partition of Ω2 into
G-orbits is a coherent configuration; the algebra mentioned in
the fourth condition is the centraliser algebra of G.
The number r is the rank of the coherent configuration.



Association schemes

An association scheme is a coherent configuration in which the
third condition in the definition is replaced by the stronger
condition that all the matrices A1, . . . , Ar are symmetric.
In this case it can be shown that the identity is one of the
matrices Ai. So the pairs of distinct elements fall into r− 1
classes; we speak of an (r− 1)-class association scheme.
Note that “symmetrising” the matrices in a coherent
configuration (replacing Ai and A>i by Ai + A>i if Ai is not
symmetric) does not always produce an association scheme.
Association schemes arose in statistics, where statisticians deal
with real data and covariance matrices are always symmetric.



Permutation groups

A coherent configuration or association scheme is trivial if
r = 2, so that there are just two relations, equality and
inequality.
Now, calling a permutation group CC-free if it preserves no
non-trivial coherent configuration on Ω, we see that
CC-freeness is equivalent to 2-transitivity.
However, the situation for association schemes is more
complicated. We call the (transitive) permutation group G on Ω
AS-free if the only G-invariant association scheme is trivial.
Thus, any 2-transitive (or even 2-homogeneous) permutation
group is AS-free. But there are others.

Problem
Can the AS-free groups be classified?



Reductions

If G is transitive, a G-invariant partition gives rise to a divisible
association scheme with two classes, “same part” and
“different parts”; so an AS-free group must be primitive.
If G is non-basic, a G-invariant Cartesian structure gives rise to
an association scheme, the Hamming scheme, where two points
lie in the ith relation if their representing n-tuples disagree in
exactly i positions. So a primitive AS-free group must be basic.
Thus a transitive AS-free group must be affine, diagonal or
almost simple, by O’Nan–Scott.



AS-freeness

I Since affine groups have abelian transitive subgroups, it is
easy to see that an affine group is AS-free if and only if it is
2-homogeneous.

I Diagonal groups with two socle factors preserve the
conjugacy class association scheme on the simple factor,
and so are not AS-free.

I With Sean Eberhard, I showed that diagonal groups with n
socle factors (n > 2) are not AS-free either. But they have
relatively large numbers of classes, typically one less than
the number of paritions of n.The paper is published in the
Australasian Journal of Combinatorics.

I As always, almost simple groups provide the mystery!



Almost simple groups

Based on computations by Faradžev, Klin and Muzichuk, we
have the following.
The smallest almost simple AS-free group is the group
PSL(3, 3), acting on the right cosets of PO(3, 3) (a subgroup
isomorphic to S4), with degree 234; this is also the smallest
AS-free group which is not 2-homogeneous.
Other examples of almost simple AS-free groups are M12,
degree 1320; J1, degree 1463, 1540 or 1596; and J2, degree 1800.
The situation is not well understood! But with increased
knowledge and computer power, it should be possible to
explore this question further.
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