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Introduction

Let G be a permutation group on a set Ω, which in this talk is
almost always infinite.
We say that G is oligomorphic if the number fn(G) of orbits of G
on the set of n-element subsets of Ω is finite for all n.
These permutation groups have many connections with logic
(countably categorical first-order theories), theory of relations
(homogeneous relational structures), and of course
combinatorial enumeration.
For some time, the question of interest was:

Problem
How fast does the sequence (fn(G))n∈N grow?
Very recently, the work of Justine Falque, Nicolas Thiéry, Pierre
Simon, and Samuel Braunfeld has given surprisingly sharp
answers to questions I raised some time ago.



Countably categorical structures

A countable structure over a first-order language is countably
categorical if it is the unique countable model of its first-order
theory (up to isomorphism).
In 1959, Engeler, Ryll-Nardzewski and Svenonius
independently proved versions of the following theorem:

Theorem
A countable first-order structure is countably categorical if and only
if its automorphism group is oligomorphic.
This is one of my favourite theorems: it says, informally,
”symmetry is equivalent to axiomatisability”.
We will see many examples of such structures in this talk.



Homogeneous structures

A relational structure is a structure over a relational first-order
language (no functions or constants). Examples: Graphs,
posets, hypergraphs, . . .
Relational structures were studied by Roland Fraı̈ssé. He
defined the age of a relational structure to be the class of finite
structures embeddable in it. Also, a relational structure M is
homogeneous if any isomorphism between finite substructures
of M can be extended to an automorphism of M.
One of Fraı̈ssé’s most celebrated theorems is the following:

Theorem
A class C is the age of a countable homogeneous relational structure
M if and only if it is closed under isomorphism, closed under taking
substructures, has only countably many members (up to
isomorphism), and has the amalgamation property. If these conditions
hold, then M is uniquely determined by C up to isomorphism.



Fräıssé classes and Fräıssé limits

The amalgamation property says that two structures with
isomorphic substructures can be glued together along the given
isomorphism inside a member of the class C.
If the conditions of Fraı̈ssé’s Theorem hold, then C is called a
Fraı̈ssé class, and M is the Fraı̈ssé limit of C.
This is a very powerful method of constructing homogeneous
structures. For example, the class of finite graphs is a Fraı̈ssé
class, and the countable random graph is its Fraı̈ssé limit.
Note that, if there are only finitely many relation symbols in the
language, then the automorphism group of a homogeneous
structure is oligomorphic.



Closure

There is a natural topology on the symmetric group on an
infinite set Ω: a basis for the open sets consists of the cosets of
pointwise stabilisers of finite sets.
If Ω is countable, then this topology is metrisable: taking
Ω = N, two permutations are close together if they agree on a
long initial subset of N.
A subgroup of Sym(Ω) is closed in this topology if and only if
it is the full automorphism group of a first-order structure. We
can take this structure to be a homogeneous relational
structure.
So we can restrict our attention to closed permutation groups,
that is, automorphism groups.



The bottom of the hierarchy

A permutation group G is n-homogeneous if fn(G) = 1; it is
highly homogeneous if it is n-homogeneous for all n ∈ N.
Highly homogeneous groups are obviously at the bottom of the
growth rate hierarchy.

Theorem
Suppose that (fn(G)) is bounded. Then G fixes a finite subset of Ω
and acts on its complement as a highly homogeneous permutation
group.
For example, the direct product of a highly homogeneous
group and a finite group.
So first we need to describe the highly homogeneous groups.
The first class of examples we notice are groups of
order-preserving permutations of a suitable totally ordered set,
such as Q or R.



Highly homogeneous groups

We can find another example by allowing permutations which
preserve or reverse the order; this preserves a ternary
betweenness relation, and so is 2-transitive but not 3-transitive.
Again, we can bend the line into a circle and preserve the
circular order; this group is again 2-transitive but not
3-transitive.
Combining the two constructions we obtain an example which
is 3-transitive but not 4-transitive.

Theorem
If G is highly homogeneous but not highly transitive, then there is a
linear or circular order preserved or reversed by all elements of G; in
particular G is not 4-transitive.
It follows that there are exactly five closed highly homogeneous
permutation groups of countable degree. The structures they
act on are the reducts of (Q,<).



Direct product

If H and K are permutation groups on sets Γ and ∆, we can
build an action of G = H× K on the disjoint union of Γ and ∆.
One can calculate fn(H× K) in terms of fn(H) and fn(K). This is
most easily expressed in terms of the generating functions, for
these sequences.
For any permutation group G, put φG(x) = ∑n≥0 fn(G)xn. Then

Proposition

φH×K(x) = φH(x)φK(x).
Note that G is highly homogeneous if and only if
φG(x) = (1− x)−1. Hence, for such a G, we have
φGr(x) = (1− x)−r, from which it follows that fn(Gr) is a
polynomial of degree r− 1 in n.



Imprimitivity and wreath products

The permutation group G is imprimitive if it preserves a
non-trivial equivalence relation on Ω.
If G is imprimitive, we can build two “smaller” groups:
I H, the stabiliser of an equivalence class, acting on that

class;
I K, the group induced by G on the set of equivalence

classes.
Conversely, given permutation groups H and K, we can build
the largest imprimitive group with H as class stabiliser and K
as group induced on the classes: this is the wreath product
H Wr K.



The orbit algebra

Let G be an permutation group. The orbit algebra of G is the
graded algebra AG =

⊕
n≥0 VG

n , where VG
n is the vector space of

functions from (Ω
n ) (the set of n-subsets of Ω) to C which are

fixed by G (that is, constant on G-orbits).
The multiplication is given as follows: if fi ∈ VG

ni
for i = 1, 2,

then f1f2 is the function in VG
n1+n2

whose value on an
(n1 + n2)-set A is given by

(f1f2)(A) = ∑
B⊆A
|B|=n1

f1(B)f2(A \ B).

This graded algebra is commutative and associative, and
contains an identity (the constant function 1 in VG

0 ).



The Hilbert series

If G is oligomorphic, then the dimension of the nth
homogeneous component VG

n of AG is fn(G). So the Hilbert
series of AG is

∑
n≥0

dim(VG
n )x

n = φG(x).

In the case where H is highly homogeneous and K is finite,
AHWrK is the algebra of invariants of K, an algebra whose
structure is well known; in particular, it is finitely generated.
The series φHWrK(X) is its Molien series.
For example, if K is the symmetric group of degree r, then its
invariants are generated by the elementary symmetric
polynomials in r indeterminates (Newton’s Theorem), and we
have

φHWrK(x) = (1− x)−1(1− x2)−1 · · · (1− xr)−1.



The theorem of Falque and Thiéry

We saw that, if H is highly homogeneous and K is finite, and
G = H Wr K, then AG is finitely generated, so (fn(G)) grows
polynomially, and we know a lot about the structure of AG.
Falque and Thiéry proved a very strong generalisation of this
observation, which was extended by Falque in her PhD thesis
to give detailed structural information:

Theorem
Let G be an oligomorphic permutation group, and suppose that fn(G)
is bounded by a polynomial in n. Then AG is a Cohen–Macaulay
algebra. In consequence, there are numbers a > 0 and r ∈ N such
that

fn(G) ∼ anr.



Cohen–Macaulay algebras

Briefly, an algebra is Cohen–Macaulay if it is finite-dimensional
over a subalgebra generated by a finite set of algebraically
independent elements.
Examples include coordinate rings of smooth algebraic
varieties.
The Hilbert series of a Cohen–Macaulay algebra is a rational
function with denominator of the form

r

∏
i=1

(1− xdi),

where the di are degrees of the alebraically independent
elements.



Imprimitive groups, again

In what follows, S denotes the symmetric group of infinite
degree.
If G is imprimitive, with infinitely many infinite blocks, then
G ≤ S Wr S, and so fn(G) ≥ fn(S Wr S). It is easy to see that
fn(S Wr S) = p(n) is the classical partition function, the number
of partitions of the integer n.
Hardy and Ramanujan calculated the asymptotics:

p(n) ∼ 1
4n
√

3
exp

(
π

√
2n
3

)
.

In broad-brush terms, it grows roughly like exp(n1/2).
More generally, if G is a group with fn(G) ∼ nd the, in similar
broad-brush terms, fn(G Wr S) is about exp(n(d+1)/(d+2)), so
slower than exponential.



Another imprimitive example

Let G = C2 Wr A, where A denotes the group of
order-preserving permutations of Q. The domain Ω can be
regarded as being partitioned into sets of size 2, and the parts
carry an order isomorphic to Q. The points within a pair can be
permuted arbitrarily, and the pairs can be permuted so as to
preserve the order.
An n-set contains either or both points from each of a certain
number of pairs; if just one, it doesn’t matter which. So the
orbit is described by an ordered sequence of 1s and 2s which
sums to n. It is a classical result that these sequences are
counted by the Fibonacci number Fn.
It is also well known that Fn ∼ c · αn, where α is the golden ratio
1
2 (1 +

√
5).

So this group, though imprimitive, exhibits exponential
growth.



Just below exponential

For any oligomorphic group G, the generating function for
G Wr S (where S is an infinite symmetric group) is given by

∑
n≥0

fn(G Wr S)xn = ∏
n≥1

(1− xn)−fn(G).

From this we can work out the asymptotics:
I if fn(G) is polynomial of degree d, then fn(G Wr S) is

fractional exponential, roughly exp(n(d+1)/(d+2));
I if fn(G) is faster than polynomial, then fn(G Wr S) is faster

than fractional exponential;
I if fn(G) is slower than exponential, then so is fn(G Wr S).

In particular, fn(S Wr S Wr S, fn(S Wr S Wr S Wr S), . . . , all grow
faster than fractional exponential but slower than exponential.



Local orders

A local order, or locally transitive tournament, is a tournament
(a complete graph with every edge carrying a direction) in
which no cyclic triple dominates or is dominated by a vertex.
The number of n-vertex local orders, up to isomorphism, is
about 2n−1/n.
Local orders form a Fraı̈ssé class. Its Fraı̈ssé limit can be
described as follows. Choose a countable dense subset of the
set of roots of unity on the unit circle with the property that
exactly one of each antipodal pair is chosen. (There is an
essentially unique way to do this.) Now these points are the
vertices, and we direct the edge {x, y} from x to y if the
(positive-sense) arc from x to y is shorter than the arc from y to
x.
Now the automorphism group G of this local order satisfies
fn(G) ∼ 2n−1/n.
By allowing order reversals, this number is approxiately
halved. These groups are primitive.



Ends of boron trees

A boron tree is a tree in which all vertices have valency 1 or 3.
(Think of it as the analogue of a hydrocarbon molecule where
trivalent boron replaces tetravalent carbon.)
There is a quaternary relation on the set of leaves of a boron
tree, where R(x, y | z, w) holds for distinct x, y, z, w if the paths
from x to y and from z to w are disjoint (this condition holds for
only one of the three partitions of the four arguments into two
2-sets).
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These structures again form a Fraı̈ssé class; and the number of
them is asymptotically cn−5/2(2.483 . . .)n. So again we get a
primitive group with exponential growth.



Permutation patterns

Let C be the class of finite sets carrying two (independent) total
orders. Since the second is a permutation of the first, the
number of n-element structures in C is n!.
C is a Fraı̈ssé class; its Fraı̈ssé limit is the generic biorder, whose
automorphism group has fn(G) = n!. By Stirling’s formula,
n! ∼

√
2πn(n/e)n. So the growth is a little faster than

exponential.
This example is related to the theory of permutation patterns, a
topic of interest to several people here.



Binary matrices

Let C be the class of structures corresponding to the entries 1 in
(0, 1)-matrices with no zero rows or columns, up to row and
column permutations. We can think of the domains of
C-structures as the edge sets of bipartite graphs. (I will not be
too precise about what the actual relations are.) Then the
number of n-element C-structures is quite difficult to evaluate,
even asymptotically; but, with Thomas Prellberg and Dudley
Stark, I found it to be roughly (n/(log n)2)n, which grows faster
than exponentially but slower than the factorial function.
As usual, C is a Fraı̈ssé class. So we get an oligomorphic group
with this growth rate.



Faster growth

For the automorphism group of the random graph,
fn(G) ∼ 2n(n−1)/2/n!, the number of n-vertex graphs up to
isomorphism.
Using Fraı̈ssé’s Theorem, it is easy to show that there is no
upper bound for the rate of growth of (fn(G)).
However, if G is the automorphism group of a homogeneous
relational structure over a finite relational language, then fn(G)
is bounded by the exponential of a polynomial. Specifically, if
the relations have arities a1, . . . , ar then

fn(G) ≤ 2na1+···+nar .



Some conjectures

On the basis of these and other examples, I was led to several
conjectures. I will state the conjectures just for primitive
groups. (All the groups from local orders onwards have been
primitive.)
Let G be primitive but not highly homogeneous, and (fn(G))
the corresponding sequence. Then I conjectured that
I fn(G) grows rapidly (at least exponentially);
I in particular, fn(G) ≥ 2n/F(n), for some polynomial F

(possibly depending on G);
I fn(G) grows “smoothly” (see next slide).

I will conclude by reporting progress on these conjectures.



Smooth growth?

There are two ways to interpret this.
Locally, we might require relations between a few consecutive
values of fn(G), along the lines of log-convexity. (Not all growth
sequences are log-convex – for example, if G = S∞ Wr S2 or
S2 Wr S∞, then fn(G) = 1 + bn/2c – but it seems nearly true.

Globally, we could require that certain limits exist, for example
I log fn(G)/ log n, for polynomial growth (the result of

Falque and Thiéry shows that this limit exists and is a
non-negative integer if it is finite);

I log log fn(G)/ log n, for fractional exponential growth (the
results of Simon and Braunfeld give information);

I log fn(G)/n, for exponential growth.
I have no general conjecture to offer.



Macpherson’s first result

At the start of his DPhil, Dugald Macpherson proved that, in
fact, fn(G) ≥ n1/2−ε; in other words, the growth is comparable
to the partition function.
He did this by encoding partitions of n into the orbits of G on
cn-sets, for some small constant c.
Subsequently, we know from the work of Simon and Braunfeld
that, in fact, for any oligomorphic group, if (fn(G)) grows faster
than polynomially, then its growth is of comparable in this
sense to the partition function.



Exponential growth

In his thesis, Dugald proved that there is a universal constant
c > 1 such that, if G is primitive but not highly homogeneous,
then in fact fn(g) ≥ cn/F(n), where F is a polynomial
(depending on G). He gave g = 5

√
2 = 1.149 . . ..

Later, Francesca Merola improved the constant to about
1.324 . . ., by using Dugald’s argument a little more carefully.
There are a number of structures a primitive group may
preserve, which all give different lower bounds; the constant
comes from the worst case.
Then Pierre Simon improved it to 1.576 . . ., by observing that
Merola’s worst case could not in fact occur; so we jump up to
the next case.
Finally, in a very recent preprint, Sam Braunfeld has improved
the constant to 2. We know from the local orders that no further
improvement is possible. I’ll say a bit about the methods at the
end.



Exponential constants

Problem
For which real numbers c > 1 is there a primitive oligomorphic group
G for which fn(G) is “about” cn (in the sense that the ratio is bounded
by a power of n)?
We know only countably many points in this exponential growth
rate spectrum, of which 2 and 2.483 . . . are the smallest.
Could it be true that there are only countably many possible
values? Much more flexible constructions would be needed to
refute this.



Stability

It was Macpherson who first realised that model-theoretic
conditions on a countably categorical theory would have
implications for the growth rate. This has been extended by
Simon and Braunfeld.
A theory is κ-stable if it has at most κ complete types; it is stable
if it is κ-stable for some infinite cardinal κ.
Roughly, a theory is unstable if it encodes the theory of the
natural numbers.
Stability theory originated in Morley’s Theorem (proving the
Łoś conjecture) that a theory in a countable language
categorical in one uncountable cardinality is uncountable in all.



The connection

Pierre Simon showed that, if M is a countably categorical
structure whose automorphism group G is primitive, then one
of the following holds:
I M is bi-definable with (Q,<) or one of its reducts (and

hence G is highly homogeneous);
I M is stable but not ω-stable;
I fn(G) ≥ 2n/F(n) for some polynomial F.

In particular we have exponential growth in the unstable case.



Monadic stability

A theory T is monadically stable if every expansion of T by
unary predicates is stable.
Sam Braunfeld proved:

Theorem
Let T be a countably categorical theory whose countable model has
(oligomorphic) automorphism group G. Suppose that T is stable.
Then either
I T is monadically stable, and (fG(n)) grows slower than

exponentially; or
I T is not monadically stable, and (fG(n)) grows faster than

exponentially.

There is more to it, but these ideas are at the basis of what I
have reported.
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