
Synchronization

Peter J. Cameron
University of St Andrews

MIT Combinatorics Seminar
20 March 2019



The dungeon

You are in a dungeon consisting of a number of rooms.
Passages are marked with coloured arrows. Each room
contains a special door; in one room, the door leads to freedom,
but in all the others, to death. You have a map of the dungeon,
but you do not know where you are.
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You can check that (Blue, Red, Blue) takes you to room 1 no
matter where you start.



Automata

The diagram on the last page shows a finite-state deterministic
automaton. This is a machine with a finite set of states, and a
finite set of transitions, each transition being a map from the set
of states to itself. The machine starts in an arbitrary state, and
reads a word over an alphabet consisting of labels for the
transitions (Red and Blue in the example); each time it reads a
letter, it undergoes the corresponding transition.
A reset word is a word with the property that, if the automaton
reads this word, it arrives at the same state, independent of its
start state. An automaton which possesses a reset word is
called synchronizing.
Not every finite automaton has a reset word. For example, if
every transition is a permutation, then every word in the
transitions evaluates to a permutation. How do we recognise
when an automaton is synchronizing?



Automata and transformation semigroups

Combinatorially, an automaton is an edge-coloured digraph
with one edge of each colour out of each vertex. Vertices are
states, colours are transitions.
Algebraically, if Ω = {1, . . . , n} is the set of states, then any
transition is a map from Ω to itself. Reading a word composes
the corresponding maps, so the set of maps corresponding to
all words is a transformation semigroup on Ω. In fact it is a
monoid, a semigroup with identity.
So an automaton is a transformation semigroup with a
distinguished generating set.
The automaton is synchronizing if and only if there is an
element of the semigroup which maps everything to a single
point.



Industrial robotics
In a factory, parts are delivered by conveyor belt to a robot for
assembly. Each part must be put on in the correct orientation.
Assuming they arrive in random orientation, this is a job for a
synchronizing automaton.
Suppose that the pieces are square, with a small projection on
one side:

Suppose the conveyor has a square tray in which the pieces can
lie in any orientation. Simple gadgets can be devised so that the
first gadget rotates the square through 90◦ anticlockwise; the
second rotates it only if it detects that the projection is pointing
towards the top. The set-up can be represented by an
automaton with four states and two transitions, see next slide.
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Now it can be verified that BRRRBRRRB is a reset word (and
indeed that it is the shortest possible reset word for this
automaton).



The Černý conjecture

This is a special case of the Černý conjecture, made about fifty
years ago and still open:

If an n-state automaton is synchronizing, then it has a reset
word of length at most (n− 1)2.

The above example and the obvious generalisation show that
the conjecture, if true, is best possible.
The Černý conjecture has been proved in some cases, but the
best general upper bound known is O(n3), due to Pin.



Graph endomorphisms
Our graphs are simple (no directions, loops, or multiple edges).
The clique number ω(Γ) of a graph Γ is the number of vertices
in its largest complete subgraph, and the chromatic number
χ(Γ) is the smallest number of colours required for a
vertex-colouring so that adjacent vertices get different colours.
Let Γ and ∆ be graphs. A homomorphism from Γ to ∆ is a map
f from the vertex set of Γ to that of ∆ with the property that, for
any edge {v, w} of Γ, the image {vf , wf} is an edge of ∆.
An endomorphism of Γ is a homomorphism from Γ to itself.

Proposition

I A homomorphism from Km to Γ is an embedding of Km into Γ;
such a homomorphism exists if and only if ω(Γ) ≥ m.

I A homomorphism from Γ to Km is a proper colouring of Γ with m
colours; such a homomorphism exists if and only if χ(Γ) ≤ m.

I There are homomorphisms in both directions between Γ and Km
if and only if ω(Γ) = χ(Γ) = m.



The obstruction to synchronization

The endomorphisms of a graph Γ form a transformation
semigroup; if Γ is not a null graph, then End(Γ) is not
synchronizing, since edges cannot be collapsed.

Theorem
Let S be a transformation monoid on Ω. Then S fails to be
synchronizing if and only if there exists a non-null graph Γ on the
vertex set Ω for which S ≤ End(Γ). Moreover, we may assume that
ω(Γ) = χ(Γ).

Proof.
Given a transformation monoid S, we define a graph Gr(S) in
which x and y are joined if and only if there is no element s ∈ S
with xs = ys. Show that S ≤ End(Gr(S)), that Gr(S) has equal
clique and chromatic number, and that S is synchronizing if
and only if Gr(S) is null.



Synchronizing groups

A permutation group is never synchronizing as a monoid, since
no collapses at all occur.
We abuse language in the following definition, due to João
Araújo and Benjamin Steinberg. A permutation group G on Ω
is called synchronizing if, for any map f on Ω which is not a
permutation, the monoid 〈G, f 〉 generated by G and f is
synchronizing.

Theorem
A permutation group G on Ω is non-synchronizing if and only if
there exists a G-invariant graph Γ, not complete or null, which has
clique number equal to chromatic number.



Permutation group theory
A permutation group G on a set Ω is

I transitive if any point of Ω can be mapped to any other by
some element of G;

I t-transitive if any t-tuple of distinct points of Ω can be
mapped to any other by some element of G;

I primitive if it is transitive and the only partitions of Ω
which are invariant under G are the trivial ones (the
partition into singletons and the partition {Ω}).

I basic if it is primitive and does not preserve a Cartesian
structure on Ω (bijection with ∆m for m > 1).

The notion of t-transitivity gets stronger as t increases (for
t ≤ |Ω|). Also

2-transitive⇒ basic⇒ primitive⇒ transitive.

Among the consequences of the Classification of Finite Simple
Groups is the complete determination of all 2-transitive groups.
But we are some way from a determination of primitive groups!



Synchronization in the hierarchy

Theorem
Let G be a permutation group of degree n > 2.

I If G is synchronizing, then it is transitive, primitive, and basic.
I If G is 2-transitive, then it is synchronizing.

Proof.
If G fails to be transitive, primitive or basic, then it preserves a
non-trivial graph with clique number equal to chromatic
number (a Hamming graph in the non-basic case, see below). If
G is 2-transitive it preserves no non-trivial graphs.t t t tt t
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An example

Let G be the group of degree n = (m
2) induced by Sm acting on

the 2-subsets of {1, . . . , m}. Then G is primitive and basic, and
not 2-transitive, for m > 4.
There are two non-trivial G-invariant graphs: the graph where
two pairs are joined if they intersect (aka the triangular graph
T(m), or the line graph of Km) and the graph where two pairs
are joined if they are disjoint (the Kneser graph K(m, 2)). These
are the two graphs in the triangular association scheme.

I T(m) has clique number m− 1, a maximum clique
consisting of all the pairs containing a fixed point. Its
chromatic number is m− 1 if m is even, and m if m is odd.

I K(m, 2) has clique number bm/2c, and has chromatic
number m− 2 by a theorem of Lovász.

Theorem
For m ≥ 5, Sm acting on 2-sets is synchronizing if and only if m is
odd.



More generally . . .

An attempt to generalise the preceding has led to an interesting
conjecture related to extremal set theory.
Consider the symmetric group Sm in its action on the set of
k-element subsets of {1, . . . , m}, for k < m/2. There is one
general way in which such a group fails to be synchronizing.
A Steiner system S(t, k, m) is a collection of k-sets (called blocks)
of the set {1, . . . , m}, such that any t-subset of {1, . . . , m} is
contained in a unique block. A large set of Steiner systems is a
partition of the set of all k-subsets of {1, . . . , m} into Steiner
systems.



A conjecture

Conjecture

There is a function F such that, for m > F(k), the group Sm acting on
k-sets is non-synchronizing if and only if there is a large set of Steiner
systems S(t, k, m) for some t with 1 ≤ t ≤ k− 1.
The G-invariant graph on k-sets would make two k-sets
adjacent if and only if they intersect in at least t points. Then an
Erdős–Ko–Rado set (all k-sets containing a given t-set) is a
clique, and the large set of Steiner systems a colouring, with the
same cardinality.
Baranyai’s theorem asserts that a large set of S(1, k, m)s exists if
and only if k | m. The only other case to be settled is a theorem
of Lu and Teirlinck: a large set of S(2, 3, m)s exists if and only if
m is an admissible order (congruent to 1 or 3 mod 6) and m > 7.



The O’Nan–Scott Theorem
In the last 40 years, many impressive results about primitive
permutation groups have been proved with the help of two
pieces of technology: the Classification of Finite Simple
Groups, and the O’Nan–Scott Theorem. The latter divides the
groups into a number of cases.
The theorem can be separated into two parts. The first concerns
the group structure of non-basic primitive groups, and is not
needed here since these groups are not synchronizing. The
second asserts:

Theorem
Let G be a primitive basic permutation group. Then G is affine,
diagonal, or almost simple.
Affine groups act as affine transformations on vector spaces
over finite prime fields. Diagonal groups are a bit harder to
describe, but I will say more later. Finally, a group G is almost
simple if T ≤ G ≤ Aut(T) for some finite simple group T. In
this case we do not specify the action of the group.



Three-factor diagonal groups

A Latin square is an n× n array whose cells contain entries
from an alphabet of size k, such that each letter occurs once in
each row and once in each column.
From a Latin square, we build a graph as follows: the vertices
are the cells of the square, and two vertices are joined if and
only if they lie in the same row or column or have the same
entry.
The Cayley table of a group is a Latin square.
Now we can define a three-factor diagonal group to be the
automorphism group of the Latin square graph of the Cayley
table of a non-abelian finite simple group T. Its socle is
T× T× T, and intersects the stabiliser of a cell in a diagonal
subgroup of the direct product.



Transversals and orthogonal mates
A transversal in a Latin square of order n is a set of n cells, one
from each row, one from each column, and one containing each
entry. An orthogonal mate of the Latin square L is a Latin
square M such that the positions of each letter of M form a
transversal of L.
This picture shows three pairwise orthogonal Latin squares:
can you spot them?



The Hall–Paige conjecture

In general, having an orthogonal mate is a much more
restrictive condition than having a transversal. But, for Cayley
tables of groups, it is not too hard to see that these conditions
are equivalent, and are also equivalent to the group having
what is known as a complete mapping.
Marshall Hall Jr and Lowell Paige conjectured in 1955 that a
finite group G has a complete mapping (that is, has the
property that its Cayley table has an orthogonal mate) if and
only if the Sylow 2-subgroups of G are either trivial or
non-cyclic.



Proof of the conjecture

The conjecture was proved in 2009:
I Stuart Wilcox reduced it to the case of simple groups, and

dealt with the simple groups of Lie type (except the Tits
group). The alternating groups had already been dealt
with by Hall and Paige.

I Anthony Evans dealt with the Tits group and all the
sporadic simple groups except the Janko group J4.

I John Bray handled the remaining case, which involved
computing with a permutation action of degree roughly
2× 109.

The papers of Wilcox and Evans were published in the Journal
of Algebra in 2009. Bray’s work is yet unpublished, but has been
accepted for publication as part of a paper on the work
described here.



Diagonal groups

The Hall–Paige conjecture enables us to deal with one of the
three O’Nan–Scott classes, the diagonal groups.
We saw that a three-factor diagonal group preserves a Latin
square graph; such a graph has clique number n, and chromatic
number n if and only if the Cayley table of the simple group
has an orthogonal mate. But by Burnside’s transfer theorem,
the Sylow 2-subgroups of a simple group cannot be cyclic, so
Hall–Paige applies: the Latin square graph has clique number
equal to chromatic number, so the group is non-synchronizing.
The argument can be modified to show that diagonal groups
with more than two factors are non-synchronizing.
The 2-factor case depends on some subtle questions about
factorisations of simple groups and is yet unsolved.



Affine and almost simple groups

Synchronization for the other O’Nan–Scott classes almost
always leads to interesting but difficult problelms in extremal
combinatorics and finite geometry.
Earlier, I mentioned Sm acting on k-sets, where we have to
invoke Erdős–Ko–Rado, Baranyai, and the existence of Steiner
systems and large sets.
Baranyai’s theorem also arises in the case of Sn acting on
regular partitions, as do Hadamard matrices.
For the classical groups acting on their polar spaces, the
argument turns on the existence of ovoids, spreads, and
partitions into ovoids. Despite fifty years of effort by finite
geometers, many of these problems are still open.



De Bruijn graphs
I will now turn to a recent development of synchronization in a
different direction.
Let n be a positive integer and A a finite alphabet. The de
Bruijn graph G(n, A) has vertex set An. For a ∈ A, w ∈ An, the
target of the edge labelled a with source w is obtained by
removing the first letter of w and appending a.
Here is G(3, {0, 1}):
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Strong synchronization

An automaton is said to be strongly synchronizing at level n if
every word of length n is a reset word.
Clearly the de Bruijn graph G(n, A) is synchronizing at level n:
when it reads w ∈ An, it ends up in the state labelled w.
Moreover, it is universal with this property, in the sense that
any strongly connected automaton which is strongly
synchronizing at level n is obtained by folding G(n, A), that is,
taking the quotient by an equivalence relation ≡ with the
property that, if two states v and w are equivalent, then the
states reached by reading a letter a from these two states are
also equivalent.



Counting foldings

Question
How many foldings does G(n, A) have?
For n = 1, the number of foldings is just the Bell number B(|A|).
We have a formula for n = 2. Let

R(s, t) = ∑
π

(−1)|π|−1(|π| − 1)!
|π|

∏
i=1

B(ais),

where π runs over all partitions of {1, . . . , t}, |π| is the number
of parts of π, and ai is the size of the ith part.
You may recognise the Möbius function of the lattice of set
partitions here.



Theorem
The number of foldings of the de Bruijn graph with word length 2
over an alphabet of cardinality n is

∑
π

s

∏
i=1

R(s, ai),

where π runs over all partitions of the alphabet, s is the number of
parts of π, and ai is the cardinality of the ith part for i = 1, . . . , s.
Here R(s, t) is the number defined on the preceding slide.
The numbers are easy to compute, but grow rather rapidly: for
|A| = 2, 3, . . . , 7, we obtain

5, 192, 78721, 519338423, 82833228599906, 429768478195109381814.



Transducers

A transducer is an automaton which can write as well as read.
That is, if it is in state s and reads a symbol a, it writes a
(possibly empty) string λ(s, a) and moves as usual along the
directed edge labelled a.
A transducer can potentially read an infinite string: I will
always make the assumption that, if it does so, it writes an
infinite string. Such a transducer induces a continuous map on
the Cantor space of all infinite strings over the alphabet.
The maps induced by invertible transducers are thus
homeomorphisms of the Cantor space. The collection of such
maps is a group, the rational group, introduced by Grigorchuk,
Nekrashevich, and Sushchanskiı̆.



The Higman–Thompson groups

The first infinite finitely presented group known was
discovered by Richard Thompson in the 1960s; this is now
called Thompson’s group V.
Shortly afterwards, Graham Higman found an infinite family
of such groups, denoted Gn,r, with n ≥ 2 and 1 ≤ r ≤ n− 1.
Thompson’s group V is G2,1.
These groups are subgroups of the rational group, although
they were not initially presented in this way. They are defined
by prefix replacement on infinite strings.



Automorphisms of Gn,r

In recent work with Collin Bleak, Yonah Maissel, Andrés Navas
and Shayo Olukoya, we have given a description of the outer
automorphism group of Gn,r. Outer automorphisms are given
by core (that is, strongly connected) invertible transducers for
which the automata describing the transducer and its inverse
are both strongly synchronizing.
However, the arguments are rather lengthy . . .
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