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Four precious jewels

My topic is four remarkable mathematical objects:

I the (Erdős–Rényi) random graph, or Rado’s graph;
I the rational numbers, as ordered set;
I the Urysohn metric space;
I the pseudo-arc.

In each case, the object can be constructed and studied by
methods of finite combinatorics (usually some variant on
Fraı̈ssé’s amalgamation method); and they in turn contribute to
areas of finite combinatorics such as Ramsey theory, as well as
further afield in topological dynamics.
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Finite random graphs

In 1963, Paul Erdős and Alfred Rényi wrote a paper on
“Asymmetric graphs”. They showed that, not only does a
random finite graph (edges chosen independently with
probability 1

2 ) have no non-trivial automorphisms (with high
probability), but it is in a certain sense at maximum distance
from symmetry.



So beautiful symmetric objects like the Petersen graph are rare.
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Countable random graphs

In a short section of the paper, Erdős and Rényi showed that the
situation for countably infinite random graphs is different: such
a graph has infinitely many automorphisms with probability 1.

The reason for this is even more extraordinary: there is only
one countably infinite random graph! (This is not in the paper,
though the tools to prove it are developed there: it is a short
appendix in the book of Erdős and Spencer on Probabilistic
Methods in Combinatorics in 1974.)
This one remarkable graph has many more properties, and
arises in many different parts of mathematics, as you might
expect.
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Rado’s graph

In 1964, Richard Rado published a construction of a countable
universal graph (one embedding every finite or countable
graph as induced subgraph).

Rado said nothing about
uniqueness or automorphisms: indeed his construction has no
obvious symmetry.
Here is Rado’s construction. The vertex set of his graph is the
set of natural numbers (including 0); for x < y, we join x to y if
the xth digit in the base 2 expansion of y is equal to 1.
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There are many other constructions of this graph. For example,
take the vertices to be the primes congruent to 1 (mod 4); join p
to q if p is a quadratic residue mod q.

For another example, take a countable model of
Zermelo–Fraenkel set theory (which exists if the theory is
consistent, by the Löwenheim–Skolem theorem). Form a graph
by joining x to y if either x ∈ y or y ∈ x.
But why are these graphs isomorphic to the one given by
Rado’s “powers of 2” construction?
Rado’s graph turns out to be “the” Erdős–Rényi random graph!
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There are many other constructions of this graph. For example,
take the vertices to be the primes congruent to 1 (mod 4); join p
to q if p is a quadratic residue mod q.
For another example, take a countable model of
Zermelo–Fraenkel set theory (which exists if the theory is
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Why does it work?

The property of the graph R used both by Erdős and Rényi and
by Rado is the following, sometimes called the Alice’s
Restaurant property (“you can get anything you want”):
(∗) Given finite disjoint sets U and V of vertices of R, there is a

vertex z joined to everything in U and to nothing in V.
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This property says that given any finite subgraph W of R, every
possible extension of W to a graph with one extra vertex is
realised inside R.
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It is a fairly easy calculation to show that this holds with
probability 1 in a countable random graph. (There are
countably many choices of U and V; for each choice of U and
V, z exists with probability 1; and a countable intersection of
sets of measure 1 has measure 1.)

Now property (∗) says that any embedding of a finite graph
into R can be extended to one further vertex in all possible
ways. This shows that R is universal. Also, used in
“back-and-forth” fashion, it shows that any two graphs with
property (∗) are isomorphic.
The picture on the next slide demonstrates the process.
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At stage 0, map a0 to b0. At even-numbered stages, let am the
first unmapped ai. Let U′ and V′ be its neighbours and
non-neighbours among the vertices alreay mapped, and let U
and V be their images under φ. Use (∗) in graph Γ2 to find a
witness v for U and V. Then map am to z.
To produce an isomorphism, we must go “back and forth”: at
odd-numbered stages, choose the first unused vertex in B, and
use property (∗) in A to find a preimage for it.
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Now, in order to show that Rado’s construction and the
quadratic residue construction give isomorphic graphs (and
that the graph is universal), it suffices to verify the Alice’s
Restaurant property.

This is very easy for Rado’s construction. For the number
theory construction, it is a pleasant exercise in nineteenth
century number theory (quadratic reciprocity and Dirichlet’s
theorem are needed). For the set theory construction, it is an
easy deduction from the axioms (only Null Set, Pairing, Union
and Foundation are required).
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Homogeneity

A structure A is homogeneous if any isomorphism between
finite substructures of A can be extended to an automorphism
of A.

The random graph is homogeneous. This is shown by
examining the back-and-forth proof of uniqueness. Suppose
that f : B→ C is an isomorphism between finite subgraphs of
R. Then f can be extended to map one additional point of B into
R; or its inverse can be extended to map onto one additional
point of C. Then the back-and-forth method shows that f can be
extended to an automorphism of the whole graph.
This is the basis for a wide-ranging study of the
automorphisms and endomorphisms of R; but that is another
topic!
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The rational numbers

A more familiar example of a universal and homogeneous
structure is the set (Q,<) of rational numbers (as ordered set).
This is characterised as the unique countable dense linear order
without endpoints, by a celebrated theorem of Cantor.

Homogeneity is shown as follows. Given an isomorphism
between finite subsets, there is a piecewise-linear
order-preserving map on the whole of Q which carries the first
to the second:
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Fräıssé

In the late 1940s and early 1950s, Roland Fraı̈ssé gave a wide
generalisation of the fact that the rational numbers are
homogeneous and universal for finite and countable ordered
sets. The context is relational structures over a given relational
language L, that is, sets carrying relations of the arities
specified by the language. (For example, for graphs or total
orders we take a single binary relation.)



Maps between structures will be embeddings as induced
substructures: that is, f : A→ B carries each instance of a
relation in A to an instance of the corresponding relation in B,
and each instance of a relation in the image of A arises in this
way. Remember: for graphs, we are using induced subgraphs.

I allow the empty set as a structure, but require it to be unique
(that is, there are no “nullary relations” in the language).
The age of a relational structure A is the class of all finite
structures embeddable in A as induced substructures.



Maps between structures will be embeddings as induced
substructures: that is, f : A→ B carries each instance of a
relation in A to an instance of the corresponding relation in B,
and each instance of a relation in the image of A arises in this
way. Remember: for graphs, we are using induced subgraphs.
I allow the empty set as a structure, but require it to be unique
(that is, there are no “nullary relations” in the language).
The age of a relational structure A is the class of all finite
structures embeddable in A as induced substructures.



A class A of finite structures is hereditary if it is closed under
taking substructures. It has the amalgamation property if two
structures B1, B2 in the class A which have substructures
isomorphic to A can be “glued together” along A inside a
structure C ∈ A:
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structures B1, B2 in the class A which have substructures
isomorphic to A can be “glued together” along A inside a
structure C ∈ A:
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Fräıssé’s Theorem

Theorem
A class A of finite structures is the age of a countable homogeneous
relational structure if and only if it is closed under isomorphism,
hereditary, has only countably many members up to isomorphism,
and has the amalgamation property.

If these conditions hold, then the countable homogeneous structure M
with age A is unique up to isomorphism.
A class A satisfying these conditions is called a Fraı̈ssé class,
and the countable homogeneous structure M is its Fraı̈ssé limit.
The Alice’s restaurant property of the Fraı̈ssé limit M says that,
if B and C are elements of the age of M with B ⊆ C and
|C| = |B|+ 1, then any embedding of B in M can be extended to
an embedding of C. Then everything works just as for the
random graph.
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Examples

Each of the following classes is a Fraı̈ssé class; the proofs are
exercises. Thus the corresponding universal homogeneous
Fraı̈ssé limits exist.

Fraı̈ssé class Fraı̈ssé limit
Graphs Rado’s graph
Triangle-free graphs Henson’s graph
Graphs with bipartition Generic bipartite graph
Total orders (Q,<)
Partial orders Generic poset
Permutation patterns Generic permutation

There are many others!
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Urysohn

Fraı̈ssé anticipated Erdős and Rényi by more then ten years,
but he was not the first to use these methods.

Pavel Samuilovich Urysohn was a Soviet pioneer of topology.
He came to western Europe with Aleksandrov, and met
Brouwer and Hilbert. On holiday in the south of France, he was
drowned while swimming in the sea, at the age of 26. One of
his last pieces of work was later written up by Aleksandrov
and Brouwer.
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Urysohn’s Theorem

A Polish space is a complete separable metric space: that is, one
in which all Cauchy sequences converge, and there is a
countable dense subset. Urysohn showed that there is a
universal homogeneous Polish space: that is, every Polish space
is embeddable in Urysohn’s space, and any isometry between
finite subsets extends to an isometry of the whole space.

We will look at this result from a “post-Fraı̈ssé viewpoint”.
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Urysohn space

The class of finite metric spaces is not a Fraı̈ssé class, since there
are too many: there are uncountably many 2-element metric
spaces up to isometry.

Instead, Urysohn essentially showed that the finite rational
metric spaces (those with all distances rational) is a Fraı̈ssé
class. Take its Fraı̈ssé limit, and then take the completion, to get
the Urysohn space.
Incidentally, if we play the same game with metric spaces with
all distances integral, we obtain a homogeneous
distance-transitive graph; and if we use just distances 1 and 2,
we obtain the random graph!
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Ramsey’s theorem

Recently there has been a remarkable development connecting
homogeneous structures with Ramsey classes and topological
dynamics, which I now sketch.

Ramsey’s theorem states:

Theorem
Given positive integers k, l, r with k < l, there is an integer N such
that, if the k-subsets of an N-set are coloured with r different colours,
there is an l-set all of whose k-subsets have the same colour.
The aim is to generalise this from a theorem about sets to a
theorem about structures such as graphs. In order to do this, it
is convenient to replace “subsets” by “embeddings”.

Accordingly, if A and B are structures, we denote by
(

B
A

)
the

set of all embeddings of A into B.
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Ramsey classes

We assume that all our classes of finite structures are hereditary
(closed under substructures). Now we can turn Ramsey’s
Theorem into a definition:

A class A of finite structures is a Ramsey class if, given
A, B ∈ A and r > 1, there is a structure C ∈ A such that, if

elements of
(

C
A

)
is coloured with r colours, there exists an

element f ∈
(

C
B

)
(an embedding of B into C) such that all

embeddings of A into C with image contained in the image of f
have the same colour.
It turns out that this can only hold if all the structures in A have
trivial automorphism group. This can be achieved by
considering them as labelled structures, that is, the point set is
{1, . . . , n} for some n (i.e. is totally ordered).
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Nešeťril’s programme

Jarik Nešetřil observed that, if a hereditary class A is a Ramsey
class, then it is necessarily a Fraı̈ssé class, and so has a Fraı̈ssé
limit M.

He thus suggested a programme which has not been completed
but has proved to be very productive. To find all Ramsey
classes, we should determine the homogeneous structures, find
their ages, and check the Ramsey property.
In particular, several examples of Fraı̈ssé classes of labelled
finite objects that we have seen turn out to be Ramsey classes,
including graphs, triangle-free graphs, permutations, and
metric spaces.
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Topology of automorphism groups

There is a natural topology defined on the symmetric group on
a countable set such as N, the topology of pointwise
convergence: two permutations g and h are close together they
agree on a long initial segment of N. Without going into
details, here are a couple of facts about this topology:

I it is derived from a metric, and the group is complete with
respect to this metric;

I a subgroup of the symmetric group is closed if and only if
it is the automorphism group of something (and
“something” can be taken to be a relational structure on
the domain of the group).

Thus, automorphism groups are complete metric spaces in
their own right.
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The Kechris–Pestov–Todorcevic theorem

There are various forms of amenability defined for topological
groups. Probably the strongest is “extreme amenability”: a
group G is extremely amenable if, whenever it acts
continuously on a compact Hausdorff space, it has a fixed
point.

Examples of this property had been found in the places where
topological groups usually live. But the theorem of Kechris,
Pestov and Todorcevic was something of a surprise:

Theorem
Let A be a Fraı̈ssé class of structures with Fraı̈ssé limit M. Then the
following are equivalent:

I A is a Ramsey class;
I the automorphism group of M is extremely amenable.
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An application

We saw that, in a Ramsey class, the structures must be rigid
(have trivial automorphism group), and that this can be
achieved by including a linear order in the language, so that
the structures are labelled.

It turns out that this is the only way to achieve it. For suppose
that A is a Fraı̈ssé class, and M its Fraı̈ssé limit. It is not hard to
show that the set of linear orders of M is a compact Hausdorff
space. By the KPT theorem, there is a linear order fixed by the
automorphism group. This induces a linear order on each
structure in the age of M.
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The pseudo-arc

What does a typical closed connected subset of the unit square look
like?

We have to be careful about the word “typical”. In a probability
space this can mean “a set of measure 1”, but here we don’t
have a measure. Instead we use a notion from Baire category:
in a complete metric space, a set is residual if it contains a
countable intersection of open dense subsets. Residual sets
behave like complements of null sets: they are non-empty, meet
every open set, and any two (or countably many) of them
intersect in a residual set.
The metric we use on closed subsets of the square is Hausdorff
metric: two sets are within distance ε if every point of one is
within distance ε from some point of the other.
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Now it turns out that there is a space P such that, in the set of
closed connected subsets of the unit square with the Hausdorff
metric, the elements homeomorphic to P form a residual set.

The space P is the pseudo-arc.
Several different constructions were given (the first by Knaster
in 1922), but R. H. Bing showed that they all produced the same
object, and that the homeomorphism group of P acts
transitively on its points.
Moreover, the statement in the first paragraph remains true if
we replace the unit square by the unit hypercube in Rn for any
n ≥ 2, or in Hilbert space.
Its topological definition might suggest that it cannot be
constructed by discrete methods, but this is not so . . .
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Turning the arrows round

I imagine that a category theorist, looking at Fraı̈ssé’s theorem,
would say, “Form the dual, by turning all the arrows around”.

This can be done, and has been done by several people. We
replace embeddings by epimorphisms, and direct limits by
inverse limits. The exact analogue of Fraı̈ssé’s theorem holds: it
is called the projective Fraı̈ssé theorem. The limit structure P is
projectively homogeneous: any two epimorphisms from P to a
finite structure are related by an automorphism of P.
There is an additional feature. The inverse limit of a family of
finite sets and maps is a subset of the Cartesian product of the
finite sets, and so has a topology, induced from the Tychonoff
product topology of the discrete topologies on the finite sets. It
is not discrete, but is totally disconnected.
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would say, “Form the dual, by turning all the arrows around”.
This can be done, and has been done by several people. We
replace embeddings by epimorphisms, and direct limits by
inverse limits. The exact analogue of Fraı̈ssé’s theorem holds: it
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Constructing the pseudo-arc

Consider the class P of reflexive paths, graphs which consist of
a finite path with a loop at each vertex. Irwin and Solecki show
that P is a projective Fraı̈ssé class, so has a projective Fraı̈ssé
limit P.

Thus P has the structure of a graph and the topology of the
Cantor set.
They show further that the graph structure on P consists of
isolated vertices and edges (with loops) only; thus, an
equivalence relation with all equivalence classes of size 1 or 2.
Taking the quotient of P by this equivalence relation gives the
pseudo-arc P.
Using this, Solecki and Tsankov were able to give a new proof
of Bing’s theorem that the pseudo-arc has a transitive
homeomorphism group.
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that P is a projective Fraı̈ssé class, so has a projective Fraı̈ssé
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that P is a projective Fraı̈ssé class, so has a projective Fraı̈ssé
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