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Who invented Sudoku?

In an appendix to a Sunday newspaper, entitled “Ten things
you didn’t know about Switzerland”, some years ago, I read:

7. Leonhard Euler invented Sudoku.

In fact he didn’t (I will tell you later who did), but the story is
rather interesting, as is the reason why the things I am talking
about are called Latin squares.
Euler was the most prolific mathematician of all time; his
collected works run to over 80 volumes.



Magic squares

A magic square is an n × n array, whose entries are the
numbers from 1 to n2, in such a way that the numbers in any
row, column or diagonal of the square have the same sum.
Since all the numbers from 1 to n2 add up to n2(n2 + 1)/2, if
each of the n rows has the same sum, this sum must be
n(n2 + 1)/2. For n = 3, this magic sum is 15; for n = 4, it is 34.
In former times, such squares were regarded as having very
special properties. Some thought that, if worn in battle, a magic
square would protect its wearer from injury! So finding magic
squares was an important technology of the day.



The Lo Shu

The Chinese had an example of a magic square of order 3,
called the Lo Shu. It was supposedly written (in Chinese
numerals) on the back of a turtle in the River Lo.

The picture is a Tibetan version of the Lo Shu. Here it is in
modern Western form.

4 9 2
3 5 7
8 1 6



Dürer

The artist Albrecht Dürer produced a famous engraving called
Melancholy, in which a moody-looking angel contemplates
varies mathematical figures and tools. On the wall is a magic
square, which Dürer has arranged so that the bottom row gives
the date of the picture: 1514.

Do you think Dürer thought mathematicians were sad people?



Graeco-Latin squares

Euler invented a new method for constructing magic squares.
This was his idea.
Suppose that we can find two n × n squares, one with n Latin
letters and the other with n Greek letters, so that

I each letter occurs once in each row and column of the
relevant square;

I if the squares are superimposed, each combination of Latin
and Greek letters occurs exactly once.

C A B
A B C
B C A

β α γ

γ β α

α γ β

Cβ Aα Bγ

Aγ Bβ Cα

Bα Cγ Aβ



Next we interpret that Latin letters as “tens digits” and Greek
letters as “units digits” in whole numbers written to base n. For
example, if n = 3, then Cβ is interpreted as the number 21 in
base 3, which is 2 × 3 + 1 = 7. The condition on the
Graeco-Latin square shows that all pairs from 00 = 0 up to
(n − 1)(n − 1) = n2 − 1 occurs once. Then add 1 to each entry
so that the numbers run from 1 up to n2.

21 = 7 00 = 0 12 = 5
02 = 2 11 = 4 20 = 6
10 = 3 22 = 8 01 = 1

8 1 6
3 5 7
4 9 2

Finally you might have to rearrange the rows and columns to
get the diagonal sums right. (In this case I have done it for you.)



Euler’s construction

So Euler needed to be able to construct Graeco-Latin squares of
order n (this means n × n) for as many n as possible.
He found that he was able to produce a construction for any
number n not of the form 4k + 2 (that is, not leaving a
remainder of 2 when divided by 4.
Here is a construction you can try for yourself. It involves
modular arithmetic, that is doing calculations and then taking
the remainder on dividing by n (much as you do with the hours
on a clock, with n = 12.)
This construction works for all odd numbers n. We take the
rows, columns, and letters all to be the numbers
0, 1, 2, . . . , n − 1. In row i and column j of the first square, you
put i + j; in the second square, you put i + 2j. (So, for example,
if n = 5, then in row 3 and column 4 in the first square you put
2, and in the second square you put 1.)



Euler’s conjecture

It is easy to see that there is no Graeco-Latin square of order 2.
You can try that for yourself.
Euler was unable to find a Graeco-Latin square of order n = 6.
So he posed his “problem of the 36 officers”:

Thirty-six officers, of six different ranks and from six
different regiments (each combination of rank and regiment
represented by one officer) are to be arranged on a parade
ground in a 6 × 6 square in such a way that in each row
and each column, each rank and each regiment occurs
exactly once.

Indeed, Euler came to think after exhaustive trials that this was
impossible:



Euler conjectured that, furthermore, no solution could be found
for any number n of the form 4k + 2.



What happened to Euler’s conjecture?

To run the story forward: In 1900, Tarry proved, by exhaustive
case analysis, that Euler was right about 6, and there was
indeed no Graeco-Latin square of order 6.
However, he may not have been the first. On 10 August 1842,
Heinrich Schumacher, the astronomer in Altona, Germany,
wrote a letter to Gauss, telling him that his assistant, Thomas
Clausen, had proved that there is no Graeco-Latin square of
order 6.
However, Clausen’s calculations have never been found.



The end of the conjecture

In 1959, R. C. Bose and S. S. Shrikhande constructed a
Graeco-Latin square of order 22, and E. T. Parker found others
of orders 10, 34, 46 and 70.
The three authors joined forces, and in 1960 showed that Euler
was as wrong as he could be: they constructed Graeco-Latin
squares of all orders except n = 2 or n = 6.
Their result made the front page of the New York Times, and
they became known as the Euler spoilers.



Latin squares

A Latin square is an n × n array whose cells contain entries
from a set of n letters so that each letter occurs once in each row
and once in each column.
Thus, if we take a Graeco-Latin square and ignore the Greek
letters, we get a Latin square: hence the name. (Of course, if we
ignore the Latin letters and just use the Greek letters, we also
get a Latin square . . . )
There is no difficulty in constructing Latin squares. Just write
1, . . . , n in the first row; then, in each successive row, move the
first element to the end and everything else left one place (as in
Scottish dancing):

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3



Algebra
Let’s think about modular arithmetic again. We can represent
modular addition and multiplication by tables: here they are
for n = 5:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

The addition table is a Latin square; in fact it is the same one
that we just constructed. The multiplication table is not, since
all the entries in row 0 are 0 (as 0 times anything is 0). But if we
just look at the other rows and columns, we see a Latin square.
This works whenever n is a prime number, and gives an
algebraic structure called a field. Try it for yourself, both for
primes, and for composite numbers.



Algebra and Graeco-Latin squares

Algebra repays its debt. Whenever we have a field of order n
(and in particular, in modular arithmetic with n prime), we can
construct n − 1 latin squares, such that every pair forms a
Graeco-Latin square. Take squares A1, . . . , An−1, where the
entry in row i and column j of Ak is i + kj.
It can be shown that n − 1 is the largest number of such squares
possible with any two forming a Graeco-Latin square. There
are important connections with geometry as well. But there is a
big open problem. We only know examples when n is a power
of a prime number. Do such sets of Latin squares exist for any other
values of n?
This problem still awaits its “Euler spoilers”.



Statistics

Rothamsted experimental station, near Harpenden in
Hertfordshire, has been conducting agricultural experiments
since 1843. Here is an experiment from the 20th century, on the
effects of different insecticides on a crop of beans:

Agricultural land in England has been cultivated for centuries,
and there maybe systematic effects on soil fertility in the
direction of ploughing, so we don’t want to confuse these with
the effects of the insecticide. So we use each insecticide once in
each row and once in each column: that is, a Latin square!



Latin squares in experiments

In the above experiment, perhaps one of the treatments is not
very effective. The insects could breed up on the plots using
that treatment, and spread to neighbouring plots. In order to be
fair to all treatments, we could require that, given any pair of
treatments, numbers i and j say, treatment j should occur once
to the left of i, once to its right, once above in the same column,
and once below. Such a square is called complete.
Here is an example:

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1



Another factor needs to be considered if we are using Latin
squares to design our experiments.
Suppose the treatments you apply leave some residual effect in
the soil. If you want to use the same plots again next year for
an experiment, you should see that each treatment next year is
paired with all treatments this year.
In other words, choose a Graeco-Latin square, and use the
Latin letters this year, the Greek letters next. That guarantees
that each of this year’s treatments will precede each of next
year’s just once.



Keeping secrets

If you want to keep your messages safe from prying eyes, you
will need to encrypt them in some way, so that the recipient can
decrypt them but an unauthorised interceptor cannot.
One ancient method is the Caesar cipher, used by Julius Caesar
to send reports on the Gallic Wars back to Rome. To encrypt,
you shift each letter forward a fixed number of places in the
alphabet; the recipient knows the number of places, so shifts
back the right number to get the message. The alphabet is
regarded as written around a circle. So for example, if the shift
was 10, the message SEND THE NINTH LEGION would be
encrypted as COXN DRO XSXDR VOQSYX.
Of course this is very easy to break. There are only 25 shifts to
try, and most of them will give nonsense, but one will give the
correct message.



One-time pad

This very simple and inefficient cipher can be tweaked to give
something much more serious, called a one-time pad.
Instead of shifting all letters by the same amount, we choose a
random shift for each letter. Perhaps we shift the first letter by
10, the second by 21, the third by 4, and so on, obtaining
CZR. . . . The random shifts can be specified by choosing
random letters of the alphabet, in this case the 10th, 21st, 4th,
. . . : so the key is JUD. . . .
This is the only cipher which has been proved to be completely
secure if properly used (this means, the key is random, and the
interceptor has no access to it). This was done by C. Shannon.
The drawback is, of course, that the key is as long as the
message, and must be kept secret from the enemy. So a spy
going off into enemy country could take a one-time pad with
him (a long list of random letters) and use it to encrypt his
messages, destroying each page once used. If he loses it, he
cannot encrypt messages any more!



It is said that, during the Cold War, this is the method that spies
actually used. Peter Wright, in his book Spycatcher, tells of
burgling the flats of suspected Soviet spies in London, finding
and copying the one-time pads, and glueing them back up
again to look untouched.
You can encrypt with the Latin square having rows and
columns indexed by the alphabet; look up the message letter by
row and the key letter by column, and read off the ciphertext
letter from the square. Back at base, this procedure can be
reversed.
Now to make things even more difficult for the enemy, you can
use an arbitrary Latin square of order 26, rather than the simple
cyclic square; this can be changed regularly. This method was
used by the Japanese navy in the Second World War.



Back to statistics

The famous statistician R. A. Fisher worked at Rothamsted for
most of his career, and developed methods for experimental
design, including the use of Latin squares.
Fisher recommended that, when using a Latin square in an
experiment, the experimenter should choose at random from
the available squares, to avoid bias. Accordingly, he and his
colleague F. Yates produced tables of Latin squares up to order
6. The classification has been continued, though the numbers
grow very rapidly. (If you write out the number of n × n Latin
squares, the number of digits required grows faster than n2.)
Two things have made life easier:

I A method for choosing a random Latin square of arbitrary
size was developed by M. T. Jacobson and P. Matthews.

I After Fisher, statisticians realised that his method was not
required; it was enough to take a single Latin square and
pemute its rows, columns and letters.



Here are the numbers of Latin squares of orders up to 11.

1 1
2 2
3 12
4 576
5 161280
6 812851200
7 61479419904000
8 108776032459082956800
9 5524751496156892842531225600

10 9982437658213039871725064756920320000
11 776966836171770144107444346734230682311065600000



Why is it so hard?

There is no simple formula. I will try to indicate why, by
looking at the case n = 4.
The first row consists of the numbers 1, 2, 3, 4 in some order.
The order doesn’t matter, so it is OK to assume that the first
row is 1 2 3 4 . Then the second row is a permutation in
which no number keeps its original place. Such a permutation
is called a derangement, and there are nine of them. (In
general, there is a formula for this number.)
But the derangements fall into two types, three of one and six
of the other. If we take a derangement of the first type as the
second row, there are four ways to complete to a Latin square;
but for the second type, there are only two completions.
So the number of Latin squares is 24 × (3 × 4 + 6 × 2) = 576.
Incidentally, we do know that if you try to construct a Latin
square row by row in this way, you will never get stuck; there is
always at least one way to proceed.



Gerechte designs
Two further developments were invented by statisticians.
Suppose the field in which the plots are located is not
“homogeneous”. Perhaps there is a boggy patch in the middle,
or there are trees along one side which shade the crops.
W. U. Behrens suggested the following procedure. Divide the
square up into relatively homogeneous regions. Then arrange
that each treatment occurs once in each region. If n = 5:

Can you find a Latin square so that each of the five regions
contains all numbers 1, . . . , 5? Behrens called these gerechte
designs (meaning “fair” or “just” designs).



Critical sets
At about the same time, J. A. Nelder defined a critical set in a
Latin square to be a set of positions such that, if you are given
the entries in those positions, there is a unique way to fill in the
other positions (but if you leave any of them out, there is more
than one solution).
Here is a very simple example, with n = 3.

2
3

You can easily see that there is a unique completion. But if, say,
we left out the 2, then in any solution we could simply swap
the 1s and 2s to get a different solution.
Critical sets have uses in studying how to change one Latin
square into another, and how to choose a random Latin square,
for example.
Put together the ideas of gerechte design and critical set, and
what do you get?



Sudoku!

The work of Behrens and Nelder was done in the 1950s;
statisticians could have come up with Sudoku at any time after
that.
But in fact it was Howard Garns, a retired architect in New
York, who invented it in 1979. It didn’t catch on there, but Maki
Kaji introduced it to Japan (where letter puzzles are more
difficult to devise given their more complicated characters, so
number puzzles are popular) under the name Sudoku in 1986.
Then New Zealander Wayne Gould (brother of former British
Labour MP Brian Gould) came across it in Japan and spread the
word, and very quickly it became as standard a feature of our
newspapers as the crossword.
Thus Sudoku asks you to “complete a critical set in the gerechte
design formed by dividing a 9 × 9 square into 3 × 3
subsquares”.



Sudoku and mathematics

But that is not the end of the story, as far as mathematicians are
concerned.
Felgenhauer and Jarvis did a big computation to show that the
total number of different types of solution to ordinary Sudoku
is 6, 670, 903, 752, 021, 072, 936, 960.
Then, using a little group theory (the theory of symmetries),
Jarvis and Russell showed that, if we don’t care about changing
the symbols, or permuting rows and columns, the number of
“essentially different” solutions is 5, 472, 730, 538.



Symmetric Sudoku
Bob Connelly (who works on the stability of geodesic domes,
invented a different form which he called symmetric Sudoku,
and showed that there are just two essentially different
solutions (so it is less interesting as a puzzle). The proof
contained some interesting mathematics, including
error-correcting codes and the card game SET R©.
David Spiegelhalter, a statistician at Cambridge, turned one of
the two solutions into stained glass:


