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Automata

A (finite-state, deterministic) automaton is a machine with a
finite set S of internal states; when it reads a symbol from a
given finite input alphabet A it changes its state in a
deterministic way.
An automaton can be represented by an edge-labelled directed
graph whose vertices are the states, edge-labels corresponding
to the symbols in the alphabet, so that there is an arc with label
a from s to t if reading symbol a causes the machine to change
from state s to state t.
Thus we require that there is a unique arc with any given label
leaving any vertex.
If the machine reads the symbols of a word in order, it
undergoes the concatenation of the corresponding transitions.
So we can also regard the automaton as a transformation
monoid (a submonoid of the full transformation monoid on S)
with a prescribed set of generators.



An example

Here is a 4-state automaton, with alphabet consisting of two
letters Blue and Red.
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The word (Blue, Red, Blue) moves from state 2 to 3 to 4 to 1.
You can check that this word takes you to state 1 no matter
where you start.



Synchronization

A word with the property we just saw (that it maps the
automaton to a fixed state no matter what its initial state) is
called a reset word. In other words, in the corresponding
transformation semigroup, a reset word is a word in the
generators which evaluates to a transformation of rank 1, that
is, one whose image has cardinality 1.
An automaton which possesses a reset word is called
synchronizing.
There is a polynomial-time algorithm to decide whether an
automaton is synchronizing. However, finding the shortest
reset word is more difficult!



The Černý conjecture

One of the oldest and most difficult problems in automata
theory is the Černý conjecture:

If an n-state automaton is synchronizing, then it has a reset
word of length at most (n− 1)2.

It is known that the bound (n− 1)2 would be best possible;
there are synchronizing automata which have no shorter reset
word than this.
After more than half a century , the best upper bound known is
O(n3). The Černý conjecture is known to be true in some
special cases. It has stimulated a lot of research in many areas
including extremal combinatorics and permutation groups.
But I won’t discuss it any further here!



Strong synchronization

For what follows, I require a much stronger condition.
An automaton is strongly synchronizing at level n if, when it
reads a word w of length n, the final state depends only on w
and not on the initial state.
In other words, an automaton is strongly synchronizing at level
n if every word of length n is a reset word.
This condition, as we will see, is closely connected with
automorphisms of the shift map in symbolic dynamics.



De Bruijn graphs

Let n be a positive integer and A a finite alphabet. The de
Bruijn graph G(n, A) has vertex set An. For a ∈ A, w ∈ An, the
target of the edge labelled a with source w is obtained by
removing the first letter of w and appending a.
Here is G(3, {0, 1}):
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The de Bruijn graph as automaton

Clearly the de Bruijn graph satisfies the condition to be an
automaton: there is a unique arc with any given label leaving
any vertex.
Regarded as an automaton, G(n, A) is strongly synchronizing at
level n: for if it reads a word w = a1 · · · an of length n, the letters
in the label of the initial state all drop off the front, and the final
state is labelled by w.
It seems clear that it is in some sense the “universal” automaton
which is strongly synchronizing at level n. We now turn to this.



Foldings

A folding of an automaton is an equivalence relation ≡ on the
set of states having the property that, if states s and t are
equivalent, and s′ and t′ are the states resulting from reading a
given letter a from these two states, then s′ and t′ are equivalent.
If ≡ is a folding of an automaton A, then there is a folded
automaton A/≡ whose states are the equivalence classes of
states in A, the transition functions defined in the obvious way.
The defining condition guarantees that these are well-defined.
The following are now easy to see.
I If A is strongly synchronizing at level n, then so is any

folding of A.
I Any automaton which is strongly synchronizing at level n

over the alphabet A is a folding of G(n, A).

Problem
If |A| = k, how many foldings of G(n, A) are there?



Counting foldings

“I count a lot of things that theres no need to count,”
Cameron said. “Just because that’s the way I am.
But I count all the things that need to be counted.”

Richard Brautigan, The Hawkline Monster: A Gothic
Western

I believe that if you properly understand objects of some kind,
you should be able to count them.

How many foldings of the de Bruijn graph with word length
n over an alphabet of size q are there?



The problem of counting foldings seems to be very difficult. We
have solved it only for n ≤ 2 and a couple of sporadic cases.
The case n = 1 is trivial. The de Bruijn graph G(1, A) has vertex
set A, and for every a ∈ A, an edge labelled a from each vertex
to the the vertex a. So any partition of A gives rise to a folding.
So the number of foldings is B(|A|), the Bell number.
I will give a brief sketch of the case n = 2. To recap: vertices of
the graph are ordered pairs of letters, which we will write as xy;
there is an edge labelled a from xy to ya. A folding is an
equivalence relation on the vertex set such that
xy ≡ uv⇒ ya ≡ va.
We have not even been able to extend the formula to the case
n = 3.



Theorem
Let

R(s, t) = ∑
τ

(−1)|τ|−1(|τ| − 1)!
|τ|

∏
i=1

B(ais),

where τ runs over all partitions of {1, . . . , t}, |τ| is the number of
parts of τ, and ai is the size of the ith part.
Then the number of foldings of G(2, A) is

∑
π

|π|

∏
i=1

R(|π|, |Ai|),

where the sum is over all partitions π = {A1, . . . , A|π|} of A.
The formula looks complicated, but is easy to calculate; the
numbers grow quite fast. For |A| = 2, . . . , 7, the values are 5,
192, 78721, 519338423, 82833228599906,
429768478195109381814.



Sketch proof

Define a graph Γ on the alphabet A, two vertices x and y joined
if there exist u and v such that ux ≡ vy (this implies that
xw ≡ yw).
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Let π be the partition of A into connected components of Γ. If
Ai is a part of Γ, then the set A×Ai (the horizontal stripe in the
figure) is a union of parts of the folding: no part can cross into a
different horizontal stripe.



Moreover, by the definition of a folding, we see that if x, y ∈ Ai,
then xw and yw lie in the same part of the folding.

q q qxw
zw

yw
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So the sets A×Ai can be treated independently, and within
such a set, points with the same second coordinate and with
first coordinates within the same part of π belong to the same
part. So we have to count partitions of π ×Ai for each part Ai
of π. There is no proper non-empty subset B of Ai such that
π × B is a union of sets of the folding. So inclusion-exclusion
gives the nuber of possiblities on A×Ai to be R(|π|, |Ai|).
Multiply and sum over π.



Thompson’s groups
Three of the best-studied infinite groups were discovered by
Richard Thompson in the 1950s, and are known as F, T and V.
Here are brief descriptions.
The group F consists of piecewise-linear order-preserving
permutations of the unit interval, where the slopes are powers
of 2 and the points of discontinuity of the slope are dyadic
rationals.
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Representing numbers in the unit interval by dyadic rationals,
we see that the group acts by prefix replacement: in the above
example, 00x 7→ 0x, 01x 7→ 10x, 1x 7→ 11x.



The group T is similar but preserves the circular order of the
roots of unity.
However our main interest lies in the group V, where the
order-preserving assumption is dropped and arbitrary prefix
replacement is allowed, provided only that the resulting map is
a bijection.
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In product replacement form this is 00x 7→ 1x, 01x 7→ 010x,
10x 7→ 011x, and 11x 7→ 00x.



The Higman–Thompson groups

The group V is a finitely presented infinite simple group, the
first known example of such a group.
The construction was generalised by Graham Higman to give a
two-parameter family of such groups, denoted by Gn,r. (Each is
finitely presented, and is simple or has a simple subgroup of
index 2.) They can be defined by product replacement as above;
the alphabet {0, 1} is replaced by an alphabet of n symbols, and
the parameter r indicates that at the first step we choose one of
r initial symbols chosen from a different alphabet.
Pardo showed that Gn,r ∼= Gm,s if and only if m = n and
gcd(r, n− 1) = gcd(s, m− 1).



Transducers

To relate these groups to the previous discussion, we introduce
the notion of a transducer: this is an automaton which has the
capacity to write as well as read symbols from an alphabet. In
general, a transducer reads a symbol, changes state, and writes
a string of symbols from the alphabet (possibly empty).
In order to avoid trivial cases, we always assume that when a
transducer reads an infinite string of symbols, it writes out an infinite
string: in other words, if we traverse a cycle in the digraph of
the underlying automaton, at least one symbol is written.
As just hinted, a transducer A with a prescribed starting state s
(called an initial transducer) can be regarded as defining a map
from the set Aω of infinite strings over the alphabet A to itself.
We are interested in the case where this map is invertible, and
the inverse is also represented by a transducer.



The rational group

The rational groupRn over an n-letter alphabet A was defined
by Grigorchuk, Nekrashevych, and Suschanskiı̆.
It is the group of invertible transformations of Aω induced by
initial transducers.
The maps are composed in the usual way; we can define a
composition directly on transducers by using the output of the
first transducer as input to the second.
The definition can be extended to the groupRn,r, which acts on
strings where the first symbol is taken from an auxiliary
alphabet of size r.



The automorphism group of Gn,r

An invertible initial transducer is said to be bisynchronizing if
the underlying automaton is strongly synchronizing, and the
same holds for the automaton representing its inverse.

Theorem
The automorphism group of Gn,r is the group of transformations of
Aω induced by bisynchronizing initial transducers; so it is a
subgroup of the rational groupRn,r.
This theorem is proved in the paper of Bleak, Cameron,
Maissel, Navas and Olukoya (arXiv 1605.09302).



Consequences

I mention here two consequences of this analysis.

Theorem
The outer automorphism group of Gn,r has trivial centre and
unsolvable order problem.
The proof involves a connection between Out(Gn,r) and the
automorphism group of the two-sided shift in symbolic
dynamics, allowing known results about the second to be
transferred to the first. I turn now to this.



Shift maps

The shift map σ comes in two flavours. It acts on either the set
Aω of infinite strings of symbols from A, or on the set AZ of
two-way infinite strings; it moves each symbol one place to the
left. (In the one-way case, the first symbol of the string is lost,
so the shift is onto but not one-to-one; in the second case it is a
bijection.)
For example, if A = {0, 1} and we interpret Aω as the set of
binary decimals representing the unit interval, then the shift
map is the function x 7→ 2x (mod 1).
The shift map is the central character in symbolic dynamics,
arising from a discretisation of dynamics of (for example)
planetary orbits.



Automorphisms of the shift

An automorphism of the shift is a homeomorphism of Xω or
XZ (regarded as Cantor space) which commutes with σ.
The connection between automata and automorphsims of the
shift was pointed out by Grigorchuk et al. in 2000.
Automorphisms of the one-sided shift are given by
transducers; in the case of the two-sided shift, we will see that a
little more is required.
Two recent papers by Bleak, Cameron and Olukoya (arXiv
2004.08478 and 2006.01466) use transducers to study the
automorphism groups of the shift maps. Some of the results are
new; several give simpler proofs of known results, or versions
more suitable to actual computation. Here are some examples.
First, it is noted that the automorphism group of the one-sided
shift over an n-letter alphabet embeds into the group of outer
automorphisms of Gn,r: the automorphisms are given by
bisynchronizing transducers.



In the one-sided case, the orders of torsion elements of Aut(σ)
are orders of automorphism groups of foldings of de Bruijn
graphs.
In the two-sided case, Aut(σ) contains the group generated by
σ as a central subgroup; the quotient is embeddable in the
group of outer automorphisms of Gn,r.
In this case, automorphisms are specified by an annotated
transducer, where the transducer determines the coset of 〈σ〉,
and the annotation determines the element of this coset.
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. . . for your attention.


