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The dungeon

You are in a dungeon consisting of a number of rooms. Each
room has two doors, coloured red and blue, which open into
passages leading to another room (maybe the same one). Each
room also contains a special door; in one room, the door leads
to freedom, but in all the others, to death. You have a map of
the dungeon, but you do not know where you are.
Can you escape? In other words, is there a sequence of colours
such that, if you use the doors in this sequence from any
starting point, you will end in a known place?
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You can check that (Blue, Red, Blue) takes you to room 1 no
matter where you start.



Automata

The diagram on the last page shows a finite-state deterministic
automaton. This is a machine with a finite set of states, and a
finite set of transitions, each transition being a map from the set
of states to itself. The machine starts in an arbitrary state, and
reads a word over an alphabet consisting of labels for the
transitions (Red and Blue in the example); each time it reads a
letter, it undergoes the corresponding transition.
A reset word is a word with the property that, if the automaton
reads this word, it arrives at the same state, independent of its
start state. An automaton which possesses a reset word is
called synchronizing.
Not every finite automaton has a reset word. For example, if
every transition is a permutation, then every word in the
transitions evaluates to a permutation. How do we recognise
when an automaton is synchronizing?



Automata and transformation monoids

Combinatorially, an automaton is an edge-coloured digraph
with one edge of each colour out of each vertex. Vertices are
states, colours are transitions.
Algebraically, if Ω = {1, . . . , n} is the set of states, then any
transition is a map from Ω to itself. Reading a word composes
the corresponding maps, so the set of maps corresponding to
all words is a transformation monoid on Ω.
So an automaton is a transformation monoid with a
distinguished generating set. It is synchronizing if it contains a
map with rank 1.



Another example
This example arises in industrial robotics.
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B R R R B R R R B
1 2 3 4 1 2 3 4 1 2
2 2 3 4 1 2 3 4 1 2
3 3 4 1 2 2 3 4 1 2
4 4 1 2 3 3 4 1 2 2

So BRRRBRRRB is a reset word.



The Černý conjecture

Much of the research on synchronization has been driven by
the Černý conjecture, over 50 years old and still unsolved.
The conjecture is very simple. It states that if an n-state
automaton is synchronizing, then it has a reset word of length
at most (n− 1)2.
The example on the last slide meets the bound when n = 4, and
has an obvious generalisation to any n; so, if true, the
conjecture would be best possible for all n.
This conjecture comes with a health warning. Despite its
apparent simplicity, it does fight back!
What follows is not a contribution to this conjecture, although
these methods have allowed us to make small progress. See the
paper by João Araújo, Ben Steinberg and me for more detail.
Rather, the subject is of interest in its own right.



Testing synchronization

Proposition

An automaton (Ω, S) is synchronizing if and only if, for any two
states a, b ∈ Ω, there is a word wa,b in the elements of S which maps a
and b to the same place.

Proof.
“Only if” is clear, so suppose that the condition holds. Let f be
an element of 〈S〉 of smallest possible rank. If the rank of S is
greater than 1, then choose two points a, b in the image; then
fwab has smaller rank than f . So f has rank 1, and the automaton
is synchronizing.
So we only have to consider all pairs of states.



The picture shows the previous example, extended to pairs of
states.
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Now it suffices to check that there is a path from any vertex on
the right to some vertex on the left; this can clearly be done in
polynomial time.



Graph endomorphisms
Our graphs are simple (no directions, loops, or multiple edges).
The clique number ω(Γ) of a graph Γ is the number of vertices
in its largest complete subgraph, and the chromatic number
χ(Γ) is the smallest number of colours required for a
vertex-colouring so that adjacent vertices get different colours.
Let Γ and ∆ be graphs. A homomorphism from Γ to ∆ is a map
f from the vertex set of Γ to that of ∆ with the property that, for
any edge {v, w} of Γ, the image {vf , wf} is an edge of ∆.
An endomorphism of Γ is a homomorphism from Γ to itself.

Proposition

I A homomorphism from Km to Γ is an embedding of Km into Γ;
such a homomorphism exists if and only if ω(Γ) ≥ m.

I A homomorphism from Γ to Km is a proper colouring of Γ with m
colours; such a homomorphism exists if and only if χ(Γ) ≤ m.

I There are homomorphisms in both directions between Γ and Km
if and only if ω(Γ) = χ(Γ) = m.



The obstruction to synchronization

The endomorphisms of a graph Γ form a transformation
monoid; if Γ is not a null graph, then End(Γ) is not
synchronizing, since edges cannot be collapsed.

Theorem
Let S be a transformation monoid on Ω. Then S fails to be
synchronizing if and only if there exists a non-null graph Γ on the
vertex set Ω for which S ≤ End(Γ). Moreover, we may assume that
ω(Γ) = χ(Γ).

Proof.
Given a transformation monoid S, we define a graph Gr(S) in
which x and y are joined if and only if there is no element s ∈ S
with xs = ys. Show that S ≤ End(Gr(S)), that Gr(S) has equal
clique and chromatic number, and that S is synchronizing if
and only if Gr(S) is null.



Synchronizing groups

A permutation group is never synchronizing as a monoid, since
no collapses at all occur.
We abuse language by making the following definition. A
permutation group G on Ω is synchronizing if, for any map f
on Ω which is not a permutation, the monoid 〈G, f 〉 generated
by G and f is synchronizing.

Theorem
A permutation group G on Ω is non-synchronizing if and only if
there exists a G-invariant graph Γ, not complete or null, which has
clique number equal to chromatic number.
So the definition of “synchronizing” exactly matches our
previous template for permutation group properties: G is
synchronizing if and only if there is no non-trivial G-invariant
graph with clique number equal to chromatic number.



Synchronization in the hierarchy

An imprimitive group preserves a partition, and so a disjoint
union of complete graphs of the same size (which clearly has
clique number equal to chromatic number).
A non-basic group preserves a Hamming graph (two n-tuples
adjacent if their Hamming distance is 1); this graph has clique
number equal to chromatic number, both equal to the alphabet
size.
A 2-homogeneous group preserves no non-trivial graph at all.
So we have:

Theorem
Let G be a permutation group of degree n > 2.
I If G is synchronizing, then it is primitive and basic.
I If G is 2-homogeneous, then it is synchronizing.
I None of these implications reverses.



The O’Nan–Scott Theorem

Recall that, by the O’Nan–Scott Theorem, a basic group is
affine, diagonal or almost simple.
Affine groups have abelian normal subgroups. They have the
form

{x 7→ xA + c : c ∈ V, A ∈ H},

where V is a finite vector space and H an irreducible linear
group on V. They may or may not be synchronizing.
Almost simple groups satisfy T ≤ G ≤ Aut(T), where T is a
non-abelian finite simple group. The action is not specified.
They may or may not be synchronizing.
Diagonal groups are considered below.



Counterexamples to a theorem of Cauchy

This was the wonderful title of a paper by Peter Neumann,
Charles Sims and James Wiegold in 1968.
Cauchy “proved” that a primitive permutation group whose
degree is one more than a prime must be doubly transitive.
Neumann, Sims and Wiegold noted that, if T is a finite simple
group, then the group induced on T by left and right
multiplication,

{(g, h) : x 7→ g−1xh}

is primitive. One can enlarge the group by adjoining
automorphisms of S (the inner automorphisms are already
included as the “diagonal” subgroup {(g, g) : g ∈ T}) and the
map x 7→ x−1. The result is the 2-factor diagonal group D(T, 2).
They noted that |A5| = 59 + 1, |PSL(2, 7)| = 167 + 1,
|A6| = 359 + 1, |PSL(2, 8)| = 503 + 1, |PSL(2, 11)| = 659 + 1,
. . . . (It is not known whether there are infinitely many
counterexamples.)



Latin squares

A Latin square of order n is an n× n array with entries taken
from an alphabet of size n, so that each letter in the alphabet
occurs once in each row and once in each column.

e a b c
a e c b
b c e a
c b a e

This is not just any old Latin square: it is the Cayley table, or
multiplication table, of the Klein group of order 4.



Latin square graphs

Given a Latin square L, we define a graph whose vertices are
the n2 cells of the square, two vertices adjacent if they lie in the
same row or the same column or contain the same symbol. This
is a Latin square graph.
If L is the Cayley table of a group T, the graph admits T3 (acting
on rows, columns and symbols), as well as automorphisms of T
and the symmetric group permuting the three types of object. If
T is simple, the group generated by all of these is primitive,
and is a three-factor diagonal group D(T, 3).
Latin square graphs are strongly regular, but almost all have
only the trivial group of automorphisms.



Transversals and orthogonal mates
A transversal is a set of cells, one in each row, one in each
column, and one containing each letter.

e a b c
a e c b
b c e a
c b a e

In this case we can partition the cells into transversals:

e a b c
a e c b
b c e a
c b a e

Regarding the colours as an alphabet we see a second Latin
square which is orthogonal to the first square, in the sense that
each combination of letter and colour occurs precisely once.



Not all Latin squares have transversals. Consider the following
square:

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Given a set of cells, one from each row and one from each
column, the sum of the row indices is 0 + 1 + 2 + 3 = 2
(mod 4). Similarly for the columns. Since each entry is the sum
of its row and column indices, the entries sum to 2 + 2 = 0
(mod 4). Thus the entries cannot be {0, 1, 2, 3}.
More generally, the Cayley table of a cyclic group of even order
has no transversal.



Complete mappings

Let G be a group. A complete mapping of G is a bijective map
φ : G→ G such that the map ψ defined by ψ(x) = xφ(x) is also
a bijection.
Given a transversal in the Cayley table of G, define φ and ψ by
the rule that φ(g) and ψ(g) are the column label and entry of
the transversal cell in row g. Then φ is a complete mapping as
above.
Also, if φ and ψ are as above, then the array with (g, h) entry
gψ(h) is a Latin square, which is an orthogonal mate for the
Cayley table.
Thus the following are equivalent:
I the Cayley table of G has a transversal;
I the Cayley table of G has an orthogonal mate;
I G has a complete mapping.



The Hall–Paige conjecture

In 1955, Marshall Hall Jr and Lowell J. Paige made the
following conjecture:

Conjecture

A finite group G has a complete mapping if and only if the Sylow
2-subgroups of G are trivial or non-cyclic.
They proved the necessity of their condition, and its sufficiency
in a number of cases, including soluble groups and symmetric
and alternating groups.
Hall was a well known group theorist and combinatorialist.
Paige was much less well known: he was a student of Richard
Bruck, had 6 students at UCLA, and has 18 papers (including
his thesis on neofields) listed on MathSciNet.



Proof of the Hall–Paige conjecture

The Hall–Paige conjecture was proved in 2009 by Stuart
Wilcox, Anthony Evans, and John Bray.
Wilcox showed that its truth for all groups follows from its
truth for simple groups, and proved it for groups of Lie type,
except for the Tits group 2F4(2)′. (The first two types, cyclic and
alternating, are covered by Hall and Paige.)
Evans dealt with the Tits group and 25 of the 26 sporadic
groups.
Bray dealt with the final group, the Janko group J4.
The papers of Wilcox and Evans were published in the Journal
of Algebra in 2009. But Bray’s work has was not published at the
time. (It has now appeared, together with the following
discussion on synchronization, in the memorial issue of the
Journal of Algebra for Charles Sims.)



Latin square graphs

Let L be a Latin square of order n, and Γ its Latin square graph.
For n > 2, this graph has clique number n: any row, column or
letter is a clique.
Also, the chromatic number is n if and only if A has an
orthogonal mate:

e a b c
a e c b
b c e a
c b a e



Diagonal groups

We saw that 3-factor diagonal groups are automorphism
groups of the Latin square graphs associated with Cayley
tables of finite simple groups.

Proposition

The group D(T, 3) is non-synchronizing.

Proof.
By Burnside’s Transfer Theorem, a non-abelian simple group
cannot have cyclic Sylow 2-subgroups. So by Hall–Paige, the
Latin square graph of its Cayley table has clique number equal
to chromatic number.
With a little more effort, we have:

Theorem
The diagonal group D(T, r) is non-synchronizing for r ≥ 3.



How to test synchronization?

The synchronizing property lies between primitivity and
2-transitivity. Each of these can be tested algorithmically in
polynomial time. What about synchronization?
The discussion so far gives an algorithm for deciding if G is
synchronizing:
I Construct all the G-invariant graphs.
I For each, test whether its clique number and chromatic

number are equal.
I If any such graph is found, then G is non-synchronizing; if

not, it is synchronizing.
This appears to be a very stupid algorithm: there are
potentially exponentially many graphs to check, and for each
graph we have to solve an NP-hard problem
Can we do better?



Separation

The only general improvement we have uses the concept of
separation.
Note that, for a transitive group of degree n, if A and B are
subsets of the domain with |A| · |B| < n, then there exists g ∈ G
with Ag∩ B = ∅. This is proved by a simple counting
argument.
We say that the transitive group G is separating if for any
subsets A, B with |A| · |B| = n and |A|, |B| > 1, there exists
g ∈ G with Ag∩ B = ∅. Otherwise G is non-separating.
It turns out that a separating group is synchronizing.



Graph-theoretic form

Theorem
A transitive group G of degree n is non-separating if and only if there
exists a G-invariant graph, not complete or null, such that the
product of its clique number and independence number is n.
Now, if G is non-synchronizing, it preserves a graph with clique
number and chromatic number k, for some k. Each colour class
in the k-colouring has cardinality n/k. So G is non-separating.
It is slightly easier to test separation than synchronization: we
only have to find the clique number of the G-invariant graphs
(the independence number of a graph is the clique number of
its complement), and according to parameterized complexity
theory, clique number is “easier” than chromatic number.



Synchronizing, not separating?

For some time we had no examples of groups which are
synchronizing but not separating. Now we know a little more:

Theorem
For primitive groups of affine or diagonal type, synchronization and
separation are equivalent.
So we are looking for almost simple groups. One infinite family
and a few sporadic examples are known. The infinite family
consists of the orthogonal groups O5(p), for p an odd prime,
acting on the parabolic quadric in projective 4-space. In the
orthogonality graph, a line is a coclique and an ovoid is a
clique; but there is no partition of the quadric into either lines
or ovoids.
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