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Notice

This is a preview of a talk I will be giving at Presidency
University, Kolkata, next month, 90 minute lecture aimed at
young researchers.
I have made some cuts for this version.
You are very welcome to think about some of these questions.
If you need more information, just ask!



Graphs and groups

“Graphs and groups” is a very big topic; there are links in both
directions between these two areas. Let me begin by briefly
mentioning two things that I will not be talking about.

Every group is the automorphism group of a graph, as
Frucht showed in 1939. Indeed, many restrictions can be
put on the graph, such as specifying the valency,
connectivity, or chromatic number, and the result remains
true.

Several of the sporadic simple groups were first
constructed as groups of automorphisms of certain graphs;
the Higman–Sims group was a famous example. (The
graph had been constructed 12 years earlier by Dale
Mesner, but he did not know about 3-designs and Mathieu
groups, which make the job much easier, and he did not
investigate the automorphism group.)



My topic is more specific. I will mostly talk about graphs
whose vertex set is a group G, and where the graph reflects
structural properties of G. There are three main areas:

Cayley graphs, invariant under translation by group
elements (and hence vertex-transitive);

graphs defined more directly, and invariant under
automorphisms of the group, such as the commuting
graph or generating graph;

other graphs related to the group (but not having the
group elements as vertices) giving structural information,
such as the prime graph or intersection graph.



Caveats

Several of these graphs were defined first for semigroups. I
will not consider semigroups here. Note that many of the
problems I raise can be asked also for semigroups, and
other interesting questions arise too.

I also cannot cover infinite groups here, apart from an
occasional brief remark, though there are many hard and
interesting problems there.

Reluctantly I also omit Cayley graphs: their study includes
all of geometric group theory.



The commuting graph

I begin with the example which is easiest to define.
In a finite group, the relation of commuting between two
elements (gh = hg) is symmetric, so we can use it to define a
graph.
Let G be a group. The commuting graph of G is the graph with
vertex set G, in which two vertices g and h are joined if gh = hg.
WARNING: I will slightly modify the definition shortly . . .
As defined, the graph has a loop at each vertex, since any
element commutes with itself. Also, elements in the centre
Z(G) of G are joined to all vertices.



Examples

If G is abelian, then its commuting graph is complete.
The two non-abelian groups of order 8 (the dihedral and
quaternion groups) have isomorphic commuting graphs, as
shown. The groups are 〈a, b : a4 = 1, b2 = 1, b−1ab = a−1〉 and
〈a, b : a4 = 1, b2 = a2, b−1ab = a−1〉. Elements of the centre are
coloured red. Loops have not been drawn.
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Random walk on the commuting graph

One remarkable property of the commuting graph is due,
essentially, to Mark Jerrum:

Theorem
The limiting distribution of the random walk on the commuting
graph of G is uniform on the conjugacy classes.
The random walk moves at discrete time steps; at each step, if
you are at a vertex, you choose a neighbouring vertex
uniformly at random and move there. I will not explain here
the theory of random walks. If you know it, the proof is a
simple exercise; if you don’t, please take it on trust!
The conclusion of the theorem means that the probability of
being at a vertex g at time t tends to a limit as t→ ∞, the limit
being inversely proportional to the size of the conjugacy class
containing g. So you are equally likely to be in any class.
This can be used to find elements in classes too small to be
found by random search.



General questions
What questions should we ask about a graph? Here are some:

Does it have isolated vertices, or vertices joined to all
others?

Is it connected? If so, what is its diameter? If not, how
many connected components does it have, and what are
their diameters?

Any other graph-theoretic question, e.g. is it Hamiltonian,
what is its chromatic number, what is its domination
number, is it perfect, etc.

Does the graph determine the group, or some of its
properties?

In the case of the commuting graph, connectedness has a very
simple positive answer: since elements of the centre are joined
to everything, the diameter is at most 2.
So to make the question less trivial, we redefine the commuting
graph so that the vertex set is G \ Z(G).



Diameter of the commuting graph

To reiterate: we define the commuting graph to have vertex set
G \ Z(G); x ∼ y if xy = yx.

Theorem (Giudici and Parker)

There is no upper bound for the diameter of the commuting graph of a
finite group; for any given d there is a 2-group whose commuting
graph is connected with diameter greater than d.
On the other hand:

Theorem (Morgan and Parker)

Suppose that the finite group G has trivial centre. Then every
connected component of its commuting graph has diameter at
most 10.



Is a non-abelian group determined by its commuting
graph?

The answer is no, in general. The two non-abelian groups of
order 8 (the dihedral and quaternion groups) each have centre
of order 2, and non-central elements have centraliser of order 4.
So in each case the commuting graph consists of three disjoint
edges. So the question is:

Question
Which non-abelian groups G are determined up to isomorphism by
their commuting graphs?
One could ask something weaker. Does the commuting graph
of G determine the order of G? (Note that the number of
vertices of the graph is |G| − |Z(G)|.)
I do not know a counterexample to this. It is known to be true
for many groups.



The prime graph

A graph with connections to the commuting graph is the prime
graph, or Gruenberg–Kegel graph, of the group G. Its vertices
are the prime divisors of |G|; there is an edge from p to q if and
only if G contains an element of order pq.
Gruenberg and Kegel introduced this graph, in an unpublished
manuscript in 1975, in the study of integral representations of
groups. They noted that groups whose prime graph is
disconnected have a very restricted structure. This was worked
out in detail by Williams in 1981 except for groups of Lie type
in characteristic 2 (the work was completed and some errors
corrected by Kondrat’ev and Mazurov in 2000).

Proposition

Let G be a finite group with Z(G) = 1. Then the commuting graph of
G is connected if and only if the prime graph is connected.
The proof is elementary and does not use the structure of
groups with disconnected prime graph.



About the prime graph

There has been a lot of research on the prime graph of a finite
group. Much of this is due to group theorists in Yekaterinberg
and Novosibirsk.
Some of the questions considered are:

Which groups are characterised by their prime graphs?

Which groups are characterised by their labelled prime
graphs, where the vertices are labelled with the
corresponding primes, and how many different labellings
can a given graph have?



To mention just one example: the paw, or balalaika, consists of
a triangle with a pendant vertex. Among groups whose prime
graph is isomorphic to the paw are the alternating group A10
and the automorphism group of the sporadic Janko group J2.
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Note that the same primes occur but 2 and 3 swap places.



The enhanced power graph

I will reverse the historical order here; the power graph was
defined before the enhanced power graph (and it was defined
for semigroups before groups).
Also, I will change my conventions once again. In almost all
the graphs I will define, the identity element of the group plays
a special role. So from now on, I will always take the vertex set
to be G \ {1}, the set of non-identity elements.
In the enhanced power graph, we define x and y to be adjacent
if there is a vertex z such that both x and y are powers of z.
This can be re-phrased: x and y are joined if and only if the
subgroup 〈x, y〉 generated by x and y is cyclic.
With this in mind, note that x and y are joined in the
commuting graph if and only if 〈x, y〉 is abelian.
Thus the enhanced power graph is a spanning subgraph of the
commuting graph.



The power graph

The directed power graph of a group G is defined as follows:
the vertex set is G \ {1}; there is an arc x→ y if y is a power of x.
Note that there may be arcs in both directions: this holds if and
only each of x and y is a power of the other, that is, 〈x〉 = 〈y〉.
The power graph is obtained from the directed power graph by
ignoring the directions on the edges (and double edges where
they occur): that is, x ∼ y if and only if one of x and y is a
power of the other.
We see that the power graph is a spanning subgraph of the
enhanced power graph.



Some observations

Different groups may have isomorphic power graphs. For
example, let G be a group with exponent 3 (of order 3d, say).
Then the power graph of G consists of (3d − 1)/2 disjoint
edges. So any other group of exponent 3 with the same order
has isomorphic power graph.
Things are even worse in the infinite case. The Prüfer group
Cp∞ has the property that its power graph is a countable
complete graph; we cannot even detect the prime p.
From now on I stick to the finite case. Here are some
observations.

The power graph of G is complete if and only if G is cyclic
of prime power order.

Otherwise, the vertex g is joined to all others if and only if
either G is cyclic and g is a generator, or G is a generalized
quaternion group and g the central involution.



Determining the directions

The power graph of G may not determine G. But does it
determine the directed power graph?
It does not determine it uniquely. For example, if G is cyclic of
prime power order, then the power graph is complete, and
there is no way to detect the generators.
But the following holds:

Theorem
The power graph of a finite group G determines the directed power
graph of G up to isomorphism.
Hence the power graph determines the enhanced power graph
up to isomorphism.



A variation

We saw that the enhanced power graph and the commuting
graph have similar definitions: adjacency of x and y can be
defined in terms of the subgroup 〈x, y〉 they generate: cyclic for
the enhanced power graph, abelian for the commuting graph.
This suggests a raft of open questions.

Question
Let P be a property of groups. For a finite group G, define a graph as
follows: the vertex set is G \ {1}, and x and y are joined if and only if
the subgroup 〈x, y〉 has property P.
For different choices of P, what can be said about this graph?
The properties of nilpotence or solubility might be good places
to start. Essentially nothing is known; the field is open!



The generating graph

Another variant is as follows:
The generating graph of G is the graph with vertex set G \ {1},
in which x and y are joined if and only if 〈x, y〉 = G.
Note that this graph has no edges if G cannot be generated by
two elements; it has loops if and only if G is cyclic. These cases
are not very interesting.
This graph is of great interest. Since the Classification of Finite
Simple Groups (CFSG), it is known that every non-abelian
finite simple group can be generated by two elements.
Moreover, a number of results assert that there is a great deal of
freedom in choosing the two generators. For example, any
non-identity element lies in a 2-element generating set.



The best result is in a recent preprint by Burness, Guralnick and
Harper:

Theorem
For a finite group G, the following three conditions are equivalent:

the generating graph has no isolated vertices;

any two vertices of the generating graph have a common
neighbour;

every proper quotient of G is cyclic.

So in particular the first two properties hold for the generating
graph of a non-abelian simple group.



A hierarchy
Part of the reason for choosing the vertex set of these graphs to
be G \ {1} is to allow them to be compared.
Given a group G, consider the following graphs:

the null graph on G \ {1};

the power graph;

the enhanced power graph;

the commuting graph;

the non-generating graph (the complement of the
generating graph);

the complete graph.
Each of these graphs is a spanning subgraph of the next, except
possibly for the commuting and non-generating graphs.
Indeed the commuting graph is a spanning subgraph of the
non-generating graph if G is non-abelian.



Equality

Question
When are two consecutive graphs in the hierarchy equal?

The non-generating graph is complete if and only if G is
not 2-generated.

For non-abelian groups G, the commuting graph is equal
to the non-generating graph if and only if G is minimal
non-abelian.

The enhanced power graph is equal to the commuting
graph if and only if G contains no subgroup Cp × Cp for p
prime.

The power graph is equal to the enhanced power graph if
and only if G contains no subgroup Cp × Cq, for p and q
distinct primes (i.e. the prime graph of G is a null graph).

The power graph is null if and only if G is an elementary
abelian 2-group.



Next steps

These results on the hierarchy suggest a couple of questions.

Question
Do similar results hold for infinite groups?
Aalipour et al. have some results for infinite soluble groups
with power graph equal to commuting graph.

Question
If successive graphs in the hierarchy are not equal, what can be said
about their difference?
The difference between the complete graph and the
non-generating graph is, of course, the generating graph, about
which a lot is known (as already mentioned).



The difference between the non-generating graph and the
commuting graph (for non-abelian groups) has been
considered by Saul Freedman. His thesis contains detailed
results about connected components and diameter of these
graphs, which I cannot summarise here. The results include a
complete analysis for finite nilpotent groups.
For the next two cases, the difference between commuting
graph and enhanced power graph, or enhanced power graph
and power graph, nothing is known, the field is wide open.



Perfectness

One of the most important properties of the power graph is
that it is perfect.
A graph is perfect if every induced subgraph has clique
number equal to chromatic number. The Strong Perfect Graph
Theorem (proving a conjecture of Berge) shows that a graph is
perfect if and only if it does not contain as induced subgraph a
cycle of odd length greater than 3 or the complement of one.
It is known that many decision problems such as clique size
and chromatic number, which are hard for general graphs, are
polynomial-time for perfect graphs (using semidefinite
programming).
Perfect graphs also contain many other important graph classes
including bipartite graphs and their complements,
comparability graphs of partial orders and their complements,
interval graphs, cographs, chordal graphs, etc.



Theorem
A power graph is perfect.
The proof works not only for groups but for semigroups and
even for power-associative magmas; it also works for infinite
objects, if we say that an infinite graph is perfect if all its finite
subgraphs have clique number equal to chromatic number.
Briefly: the directed power graph is a partial preorder, a
reflexive and transitive relation, and the power graph is its
comparability graph. We can turn a partial preorder into a
partial order without changing the comparability graph: the
relation ≡ defined by x ≡ y if x→ y and y→ x is an
equivalence relation; now refine the order by taking any total
order on each equivalence class. Now the easy direction in
Dilworth’s Theorem says that the comparability graph of a
partial order is perfect.



A problem

The enhanced power graph and the commuting graph can fail
to be perfect. Consider, for example, the commuting graph of
S5, and look at the transpositions (1, 2), (3, 4), (5, 1), (2, 3) and
(4, 5). The induced subgraph of the commuting graph is a
5-cycle, with clique number 2 and chromatic number 3.
It is easy to modify this example to deal with the enhanced
power graph, replacing transpositions with cycles of pairwise
coprime lengths.

Problem

Which groups have perfect enhanced power graph?

Which groups have perfect commuting graph?

The groups considered earlier, where the enhanced power
graph or commuting graph are equal to the power graph, have
this property. What others exist?



Other properties

Pallabi Manna, Ranjit Mehatari and I are conducting a study of
groups whose power graphs belong to various well-studied
classes defined by forbidden induced subgraphs. We have
complete results for nilpotent groups, and in some cases for
arbitrary finite groups.
A threshold graph is a graph which can be built from a single
vertex by the two operations of adding an isolated vertex and
adding a vertex joined to everything.
A split graph is a graph whose vertex set is the disjoint union of
a complete graph and a null graph (with arbitrary edges
between).
Every threshold graph is split, and every split graph is perfect.
Both classes have been widely investigated, have good
algorithmic properties, and have applications in computer
science and elsewhere.



Which power graphs are threshold or split?

Theorem
For a finite group G, the following conditions are equivalent:

the power graph of G is a threshold graph;

the power graph of G is a split graph;

G is cyclic of prime power order, or an elementary abelian or
dihedral 2-group, or a cyclic group of order 2p, or a dihedral
group of order 2pn or 4p, where p is an odd prime and n ≥ 1.

In fact these groups are precisely those whose power graphs
have no induced subgraph consisting of two disjoint edges.



A challenge

Problem
Which if any of these results can be extended (in some form) to
semigroups?


