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What is a group?

I have always thought that groups were given to us to act on
something.
Over the course of history, a group has been:
I a symmetry group, the collection of all symmetries of

something;
I a permutation group, a set of permutations of a set Ω

closed under composition and inversion and containing
the identity;

I an abstract group, a set G with a binary operation
satisfying the (now-standard) group axioms.

At each stage it was necessary to show that the same class of
objects is being considered: for example, every permutation
group is the group of symmetries of something, and any
abstract group is isomorphic to a permutation group (Cayley’s
Theorem).



Permutation groups and group actions

A permutation group is a subgroup of the symmetric group
Sym(Ω) on some set Ω.
An action of a group G is a homomorphism from G to the
symmetric group Sym(Ω).
If we understand the abstract structure of a group, we can
describe its actions. Conversely, if we know enough about
some or all the actions of a group, we can deduce information
about its structure.
For the most part, I will consider permutation groups.
The number n = |Ω| is the degree of the permutation group G.
I usually assume that it is finite.



Permutation group properties

In any kind of representation of a group, we consider reduction
to simpler representations, and the reverse problem of building
arbitrary representations from simpler ones.
For permutation groups, most of the properties used in this
way can be given a uniform definition.
A structure of any kind on Ω (graph, order, first-order
structure, topological space, or whatever) will be called trivial
if it is preserved by the symmetric group Sym(Ω), and
non-trivial otherwise.
For example,
I the trivial subsets of Ω are the empty set and Ω;
I the trivial graphs on Ω are the null graph (with no edges)

and the complete graph (in which every pair of points
forms an edge).



Transitivity

This is the prototype for the way permutation group properties
will be introduced.
The permutation group G on Ω is transitive if it preserves no
non-trivial subset of Ω.
Thus, if G is transitive and α, β ∈ Ω, the only G-invariant subset
containing α is the whole of Ω, which also contains β; so there
is an element g ∈ G mapping α to β. (This is the classical
definition of transitivity.)



Theorems of Jordan and Fein–Kantor–Schacher
A derangement is a permutation with no fixed points.

Theorem
Let G be a transitive permutation group of degree n > 1.
I G contains a derangement.
I G contains a derangement of prime power order.

The first part, due to Jordan, is elementary: by the
Orbit-Counting Lemma, the average number of fixed points of
elements of G is 1, and the identity fixes more than 1. See
Serre’s beautiful paper “On a theorem of Jordan”.
The second part, due to Fein, Kantor and Schacher, requires the
Classification of Finite Simple Groups, together with detailed
analysis of all the simple groups. Moreover, it was needed for a
result in number theory (on relative Brauer groups of global
field extensions).

Problem
Is there a more elementary proof of the FKS theorem?



Intransitive groups

The minimal non-empty G-invariant subsets of Ω are called
orbits. The argument above shows that, if two points belong to
the same orbit, then there is an element of G mapping one to
the other; so G has an action on each orbit, and this action is
transitive.
If G∆ is the permutation group induced on the orbit ∆ by G,
then G is not uniquely determined by the transitive
constituents G∆, but it can be shown that it is a subdirect
product of these (smaller) permutation groups.
So for many purposes it is enough to study transitive groups.



Group-theoretic interpretation

Let H be a subgroup of G. Then G acts on the set H\G of right
cosets Hg (for g ∈ G) by right multiplication. These are the link
between the permutation group and abstract group structures:
any transitive action of a group G is isomorphic (in an
appropriate sense) to an action of this form.
In more detail, if α ∈ Ω, the stabiliser Gα is the set of elements
of G fixing α; it is a subgroup of G, and the action of G on the
orbit containing α is isomorphic to the action on the set of right
cosets of Gα.
The isomorphism works as follows: for any element β in the
orbit of α, the set {g ∈ G : αg = β} is a right coset of Gα, and
every right coset arises in this way.



Primitivity

The trivial partitions of Ω are the partition into singletons and
the partition with a single part Ω.
The permutation group G on Ω is primitive if it is transitive
and preserves no non-trivial partition of Ω.
The reason for including “transitive” in the definition is that a
set of size 2 has only the trivial partitions, so even the trivial
group preserves no non-trivial partition. This actually matters
in investigating the structure of diagonal groups, but in general
we prefer primitive groups to be transitive.



Group-theoretic version

As we saw, any transitive action of G is isomorphic to the
action on the set of right cosets of the point stabiliser Gα.
This action is primitive if and only if Gα is a maximal subgroup
of G.
Also, if N is a normal subgroup of G, then the orbits of N form
a G-invariant partition; so, if G is primitive, then either N is
transitive, or its action is trivial (fixing every point). For GαN is
a subgroup properly containing Gα, hence equal to G; so N
contains a set of coset representatives for Gα in G, which means
that it is transitive.



Quasi-primitive groups

This leads to a concept which is a weakening of primitivity.
We say that the transitive permutation group G on Ω is
quasi-primitive if every normal subgroup of G is either
transitive or trivial. Thus, a primitive group is quasi-primitive.
In particular, any transitive action of a simple group is
quasi-primitive.

Problem
Is there a definition of quasi-primitivity in the style used above for
transitivity and primitivity, i.e. “G is quasi-primitive if and only if
there is no non-trivial G-invariant structure of type X”?
Many results about primitive groups have been extended to
quasi-primitive groups, especially by Cheryl Praeger and her
colleagues; but I will not discuss them further.



Imprimitive groups

Suppose that G preserves the non-trivial partition P, and let B
be a member of P.
Define H to be the permutation group induced on B by its
setwise stabiliser, and K the permutation group induced on P
by G.
Then G is isomorphic to a subgroup of the wreath product
H Wr K, whose base group is a Cartesian product of |P| copies
of H (indexed by P), and whose top group is K, acting on the
base group by permuting the factors.
Again we have a reduction to “smaller” groups. However, I
will not discuss this further.



Cartesian structures

Much permutation group theory focuses on describing
primitive (or quasi-primitive) groups. However, it is
convenient to take one more step.
A Cartesian structure on Ω is an identification of Ω with Xn for
some set X and natural number n; it is non-trivial if n > 1. Such
a structure can be regarded in various ways; for example, we
can think of Xn as a metric space with the Hamming metric dH,
in which the distance between two n-tuples is the number of
coordinates in which they differ.
If G preserves a Cartesian structure on Ω, then we can define
two “smaller” permutation groups H and K, where H is the
group induced on the elements of X in a given coordinate by its
stabiliser, and K is the group permuting the coordinates; once
again we have an embedding of G in the wreath product
H Wr K.
For more details see the recent book by Praeger and Schneider.



Basic groups

A permutation group G on Ω is basic if it is primitive and
preserves no non-trivial Cartesian structure on Ω.
A remarkable theorem due to O’Nan and Scott, extending
earlier (and neglected) results of Jordan, asserts the following.

Theorem
A basic permutation group on a finite set Ω is affine, diagonal, or
almost simple.
I will explain the three types of group on the next few slides.



Affine groups

A permutation group G on Ω is affine if there is an
identification of Ω with a vector space V over a field F such
that G is contained in the affine general linear group

AGL(V) = {v 7→ vA + c : A ∈ GL(V), c ∈ V}

where GL(V) is the group of invertible linear transformations
of V, and G contains the translation group
T = {v 7→ v + c : c ∈ V}.
An affine permutation group is thus a semidirect product of T
by H, where H is a subgroup of GL(V). Now
I G is primitive if and only if H is irreducible on V;
I G is basic if and only if H is primitive as linear group, that

is, preserves no non-trivial direct sum decomposition of V.
Further study of affine groups uses Aschbacher’s Theorem on
subgroups of linear groups, as explained by Colva
Roney-Dougal yesterday. (We’ve excluded C1 and C2.)



Diagonal groups

Let T be a non-abelian finite simple group, and d a natural
number greater than 1. A permutation group G is diagonal if its
socle (product of minimal normal subgroups) is isomorphic to
Td acting on the cosets of its diagonal subgroup
{(t, t, . . . , t) : t ∈ T}.
In the case d = 2, there is a simpler description: T× T acts on T
by left and right multiplication:

(g, h) : t 7→ g−1th.

The normaliser of Td in the symmetric group also contains
I automorphisms of T (acting componentwise);
I the symmetric group Sd, permuting the components.

In the case d = 3, the full diagonal group is the automorphism
group of the Latin square graph associated with the Cayley
table of T.



Almost simple groups

The group G is almost simple if T ≤ G ≤ Aut(T) for some
non-abelian simple group T, where T is embedded in Aut(T) as
its group of inner automorphisms.
The Schreier conjecture, whose truth follows from the
Classification of Finite Simple Groups, asserts that the outer
automorphism group Aut(T)/T is “very small”, so that G is
pinned down quite precisely.
However, in contrast to the other two classes in the
O’Nan–Scott theorem, the action of G is not prescribed here. So
this is the case where most of the mystery resides.



Multiply-transitive groups

A permutation group G on Ω is 2-transitive if it preserves no
non-trivial directed graph on Ω. Equivalently, any ordered pair
of distinct points of Ω can be mapped to any other such pair by
some element of G.
More generally G is t-transitive if any t-tuple of distinct points
can be mapped to any other by an element of G. (We assume
that |Ω| ≥ t.) Note that t-transitivity implies (t− 1)-transitivity.
The symmetric group of degree n is n-transitive, and the
alternating group is (n− 2)-transitive. In the nineteenth
century, Mathieu discovered two additional 5-transitive
groups, M12 and M24, and two 4-transitive groups, M11 and
M23.
Mathieu knew that primitive groups other than Sn and An exist
for 5 ≤ n ≤ 33; but for n = 22, it is necessary to construct M22
to show this.



Multiply-transitive groups, again

For a century, one of the defining problems of permutation
group theory was the existence question for 6-transitive groups
other than symmetric and alternating groups. Wielandt found a
bound of about log n for the transitivity degree of such a group
of degree n. He also showed the non-existence of 8-transitive
groups modulo the Schreier conjecture; this was improved to 7
by Nagao and 6 by O’Nan.
Burnside knew that a 2-transitive group must be affine or
almost simple. (This special case of the O’Nan–Scott theorem
was probably known to Jordan but forgotten.)
With the combined efforts of many people including Curtis,
Kantor, Seitz, Howlett, Hering, and Liebeck, and the
Classification of Finite Simple Groups, we know have:

Theorem
All finite 2-transitive groups are known. In particular, the only
6-transitive groups are symmetric and alternating groups.



Footnote to Mathieu
Mathieu may have thought that primitive groups of degree n
(other than Sn or An) would exist for all, or almost all, n. But
there is none of degree 34. With Peter Neumann and Dave
Teague, I showed (using CFSG) that degrees of such groups are
rare; if e(x) is the number of them less than x, then

e(x) ∼ 2π(x) + (1 +
√

2)x1/2 + O(x1/2/ log x).

(Here π(x) is the number of primes less than x. The difference
between π(x) and its analytic approximation x/ log x swamps
out the next term in the asymptotic expansion.)
Aner Shalev told us yesterday about his extension (with Roger
Heath-Brown and Cheryl Praeger) to quasi-primitive groups:
the coefficient 2 in the expansion is replaced by 2.763085 . . .
All primitive groups of degree smaller than 4096 have been
determined; these groups are available in the computer algebra
systems Magma and GAP. (This would be completely out of
reach without CFSG.) Very great thanks to Colva
Roney-Dougal for her amazing work on this!



Set-transitivity

In their foundational book on game theory, von Neumann and
Morgenstern asked (in connection with their definition of
“fair” n-player games), which permutation groups of degree n
are set-transitive, that is, transitive on subsets of size t for
0 ≤ t ≤ n? The question was answered by Chevalley
(unpublished as far as I know); a solution was published by
Beaumont and Peterson (with no reference to von Neumann
and Morgenstern). Apart from symmetric and alternating
groups, there are just four such groups, with degrees 5, 6, 9, 9
respectively.
More generally a permutation group is 2-set transitive, or
2-homogeneous, if it preserves no non-trivial graph on Ω, that
is, acts transitively on the 2-element subsets of Ω.
Further, G is t-set transitive, or t-homogeneous, if it acts
transitively on the t-element subsets of Ω. Note that
t-homogeneity is equivalent to (n− t)-homogeneity (where
n = |Ω|), so we may assume that t ≤ n/2.



t-homogeneity

A pioneering paper of Livingstone and Wagner investigated
these concepts. They showed using representation theory that
t-homogeneity implies (t− 1)-homogeneity for 2 ≤ t ≤ n/2.
They showed further that such groups are t-transitive for t ≥ 5.
If G is 2-homogeneous but not 2-transitive, then no pair of
points can be interchanged, so G has odd order. By the
Feit–Thompson theorem, G is soluble, from which it follows
that it is affine, and that 〈G,−I〉 is 2-transitive. Thus all such
groups are known. (This was done independently by Kantor
and Berggren.)
More generally Kantor determined all the t-homogeneous but
not t-transitive groups for 2 ≤ t ≤ 4.



Other properties

There are several other classes of primitive permutation
groups, defined by other types of combinatorial structure, with
the usual template: G is “X-free” if it preserves no non-trivial
X-structure on Ω. I will talk about several of these, arising from
automata theory and semigroup theory, in my next talk.
I will finish up the present talk by describing a recent result
along these lines by Sean Eberhard and me.
This also allows me to introduce a very important
combinatorial tool in the study of permutation groups.



Coherent configurations

Coherent configurations have several mathematical origins.
They were introduced by Donald Higman to extend work of
Schur and Wielandt on permutation groups (and specifically
for decomposing permutation characters); by Weisfeiler and
Leman for an attack on the graph isomorphism problem; and
by Bose for use in design and analysis of experiments in
statistics.
A binary relation on a set Ω (a subset of Ω×Ω) can be
represented by a zero-one relation matrix with rows and
columns indexed by Ω: the (α, β) entry is 1 if (α, β) satisfies the
relation and zero otherwise.



A coherent configuration is a set C of binary relations on Ω
such that
I the relations in C partition Ω×Ω;
I a subset of the relations partitions the diagonal
{(α, α) : α ∈ Ω};

I the converse of a relation in C is in C;
I the linear span of the relation matrices is closed under

matrix multiplication.
Thus the relation matrices span an algebra, the Bose–Mesner
algebra of the scheme.



Association schemes

The relation matrices of a coherent configuration over C form a
semisimple algebra, the Bose–Mesner algebra of the
configuration.
The orbits on Ω×Ω of a permutation group G on Ω form a
coherent configuration; such a configuration is called Schurian.
This was Higman’s motivation for studying these things. The
Bose–Mesner algebra of a Schurian scheme is the centraliser
algebra of the permutation group.
If all the matrices are symmetric, the configuration is called an
association scheme. Following Bose, statisticians were
interested only in association schemes, since covariance
matrices are always symmetric, and statistical data consists of
real numbers.



AS-free groups

The trivial coherent configurations are the partition into
singletons and the 2-part partition whose relation matrices are I
and J− I (where J is the all-1 matrix).
So, if we define G to be CC-free if it preserves no non-trivial
coherent configuration, the CC-free groups would be the
2-transitive groups.
However, for association schemes, the question is more subtle.
Call a permutation group G AS-free if it preserves no
non-trivial association scheme (symmetric coherent
configuration) on Ω.

Problem
Which transitive permutation groups are AS-free?
The 2-homogeneous groups are AS-free; but there are others!



AS-free groups, continued

If G is transitive but imprimitive, it preserves a partition of Ω,
and so preserves the divisible association scheme whose
relations are “equal”, “different but in the same part”, and
“other”. So an AS-free group is primitive.
If G is primitive but not basic, it preserves a Hamming
association scheme, whose relations are defined by the values
of the Hamming metric. So an AS-free group is basic.
By O’Nan–Scott, it is affine, diagonal or almost simple.
An affine AS-free group must be 2-homogeneous. For the
Bose–Mesner algebra of the coherent configuration are
contained in the group algebra of the (abelian) translation
group, from which it is easy to see that the configuration can be
symmetrised by adding relation matrices to their transposes if
necessary.



The final result

A 2-factor diagonal group has socle T× T (T simple), acting by
left and right multiplication. It preserves the conjugacy class
scheme, in which x and y are in the relation corresponding to
the class C if x−1y ∈ C∪ C−1. So these groups are not AS-free.
A 3-factor diagonal group, as we saw, is the automorphism
group of the Latin square graph of the Cayley table of T. This
graph is strongly regular, which means that the relations
“equal”, “adjacent” and “non-adjacent” form an association
scheme. Eberhard and I were able to generalise this to construct
association schemes for d-factor diagonal groups for all d ≥ 3.
So these groups are not AS-free.
Hence we have:

Theorem
A transitive AS-free permutation group is either 2-homogeneous or
almost simple.



Almost simple groups

Perhaps surprisingly, there do exist almost simple AS-free
groups, though only a few are known at present. These are:
I PSL(3, 3), acting on the right cosets of PO(3, 3) (a

subgroup isomorphic to S4), with degree 234;
I M12, degree 1320;
I J1, degree 1463, 1540 or 1596;
I J2, degree 1800.

Problem
Make some sense of almost simple AS-free groups!
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