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The dungeon

You are in a dungeon consisting of a number of rooms. Each
room has two doors, coloured red and blue, which open into
passages leading to another room (maybe the same one). Each
room also contains a special door; in one room, the door leads
to freedom, but in all the others, to death. You have a map of
the dungeon, but you do not know where you are.
Can you escape? In other words, is there a sequence of colours
such that, if you use the doors in this sequence from any
starting point, you will end in a known place?
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You can check that (Blue, Red, Blue) takes you to room 1 no
matter where you start.



Automata

The diagram on the last page shows a finite-state deterministic
automaton. This is a machine with a finite set of states, and a
finite set of transitions, each transition being a map from the set
of states to itself. The machine starts in an arbitrary state, and
reads a word over an alphabet consisting of labels for the
transitions (Red and Blue in the example); each time it reads a
letter, it undergoes the corresponding transition.
A reset word is a word with the property that, if the automaton
reads this word, it arrives at the same state, independent of its
start state. An automaton which possesses a reset word is
called synchronizing.
Not every finite automaton has a reset word. For example, if
every transition is a permutation, then every word in the
transitions evaluates to a permutation. How do we recognise
when an automaton is synchronizing?



Automata and transformation monoids

Combinatorially, an automaton is an edge-coloured digraph
with one edge of each colour out of each vertex. Vertices are
states, colours are transitions.
Algebraically, if Ω = {1, . . . , n} is the set of states, then any
transition is a map from Ω to itself. Reading a word composes
the corresponding maps, so the set of maps corresponding to
all words is a transformation monoid on Ω.
So an automaton is a transformation monoid with a
distinguished generating set. It is synchronizing if it contains a
map with rank 1.



The Černý conjecture

Much of the research on synchronization has been driven by
the Černý conjecture, over 50 years old and still unsolved.
The conjecture is very simple. It states that if an n-state
automaton is synchronizing, then it has a reset word of length
at most (n− 1)2. It is known that, if true, this would be best
possible for all n.
This conjecture comes with a health warning. Despite its
apparent simplicity, it does fight back!
What follows is not specifically a contribution to this
conjecture, although these methods have allowed us to make
small progress. See the paper by João Araújo, Ben Steinberg
and me for more detail.



Graph endomorphisms
Our graphs are simple (no directions, loops, or multiple edges).
The clique number ω(Γ) of a graph Γ is the number of vertices
in its largest complete subgraph, and the chromatic number
χ(Γ) is the smallest number of colours required for a
vertex-colouring so that adjacent vertices get different colours.
Let Γ and ∆ be graphs. A homomorphism from Γ to ∆ is a map
f from the vertex set of Γ to that of ∆ with the property that, for
any edge {v, w} of Γ, the image {vf , wf} is an edge of ∆.
An endomorphism of Γ is a homomorphism from Γ to itself.

Proposition

I A homomorphism from Km to Γ is an embedding of Km into Γ;
such a homomorphism exists if and only if ω(Γ) ≥ m.

I A homomorphism from Γ to Km is a proper colouring of Γ with m
colours; such a homomorphism exists if and only if χ(Γ) ≤ m.

I There are homomorphisms in both directions between Γ and Km
if and only if ω(Γ) = χ(Γ) = m.



The obstruction to synchronization

The endomorphisms of a graph Γ form a transformation
monoid; if Γ is not a null graph, then End(Γ) is not
synchronizing, since edges cannot be collapsed.

Theorem
Let S be a transformation monoid on Ω. Then S fails to be
synchronizing if and only if there exists a non-null graph Γ on the
vertex set Ω for which S ≤ End(Γ). Moreover, we may assume that
ω(Γ) = χ(Γ).

Proof.
Given a transformation monoid S, we define a graph Gr(S) in
which x and y are joined if and only if there is no element s ∈ S
with xs = ys. Show that S ≤ End(Gr(S)), that Gr(S) has equal
clique and chromatic number, and that S is synchronizing if
and only if Gr(S) is null.



Synchronizing groups

A permutation group is never synchronizing as a monoid, since
no collapses at all occur.
We abuse language by making the following definition. A
permutation group G on Ω is synchronizing if, for any map f
on Ω which is not a permutation, the monoid 〈G, f 〉 generated
by G and f is synchronizing.

Theorem
A permutation group G on Ω is non-synchronizing if and only if
there exists a G-invariant graph Γ, not complete or null, which has
clique number equal to chromatic number.
So the definition of “synchronizing” exactly matches our
previous template for permutation group properties: G is
synchronizing if and only if there is no non-trivial G-invariant
graph with clique number equal to chromatic number.



Synchronization in the hierarchy

An imprimitive group preserves a partition, and so a disjoint
union of complete graphs of the same size (which clearly has
clique number equal to chromatic number).
A non-basic group preserves a Hamming graph (two n-tuples
adjacent if their Hamming distance is 1); this graph has clique
number equal to chromatic number, both equal to the alphabet
size.
A 2-homogeneous group preserves no non-trivial graph at all.
So we have:

Theorem
Let G be a permutation group of degree n > 2.
I If G is synchronizing, then it is primitive and basic.
I If G is 2-homogeneous, then it is synchronizing.
I None of these implications reverses.



The O’Nan–Scott Theorem

Recall that, by the O’Nan–Scott Theorem, a basic group is
affine, diagonal or almost simple.
Affine groups have abelian normal subgroups. They have the
form

{x 7→ xA + c : c ∈ V, A ∈ H},

where V is a finite vector space and H an irreducible linear
group on V. They may or may not be synchronizing.
Almost simple groups satisfy T ≤ G ≤ Aut(T), where T is a
non-abelian finite simple group. The action is not specified.
They may or may not be synchronizing.
Diagonal groups are considered below.



Counterexamples to a theorem of Cauchy

This was the wonderful title of a paper by Peter Neumann,
Charles Sims and James Wiegold in 1968.
Cauchy “proved” that a primitive permutation group whose
degree is one more than a prime must be doubly transitive.
Neumann, Sims and Wiegold noted that, if T is a finite simple
group, then the group induced on T by left and right
multiplication,

{(g, h) : x 7→ g−1xh}

is primitive. One can enlarge the group by adjoining
automorphisms of S (the inner automorphisms are already
included as the “diagonal” subgroup {(g, g) : g ∈ T}) and the
map x 7→ x−1. The result is the 2-factor diagonal group D(T, 2).
They noted that |A5| = 59 + 1, |PSL(2, 7)| = 167 + 1,
|A6| = 359 + 1, |PSL(2, 8)| = 503 + 1, |PSL(2, 11)| = 659 + 1,
. . . . (It is not known whether there are infinitely many
counterexamples.)



Latin squares

A Latin square of order n is an n× n array with entries taken
from an alphabet of size n, so that each letter in the alphabet
occurs once in each row and once in each column.

e a b c
a e c b
b c e a
c b a e

This is not just any old Latin square: it is the Cayley table, or
multiplication table, of the Klein group of order 4.



Latin square graphs

Given a Latin square L, we define a graph whose vertices are
the n2 cells of the square, two vertices adjacent if they lie in the
same row or the same column or contain the same symbol. This
is a Latin square graph.
If L is the Cayley table of a group T, the graph admits T3 (acting
on rows, columns and symbols), as well as automorphisms of T
and the symmetric group permuting the three types of object. If
T is simple, the group generated by all of these is primitive,
and is a three-factor diagonal group D(T, 3).
Latin square graphs are strongly regular, but almost all have
only the trivial group of automorphisms.



Transversals and orthogonal mates
A transversal is a set of cells, one in each row, one in each
column, and one containing each letter.

e a b c
a e c b
b c e a
c b a e

In this case we can partition the cells into transversals:

e a b c
a e c b
b c e a
c b a e

Regarding the colours as an alphabet we see a second Latin
square which is orthogonal to the first square, in the sense that
each combination of letter and colour occurs precisely once.



Not all Latin squares have transversals. Consider the following
square:

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Given a set of cells, one from each row and one from each
column, the sum of the row indices is 0 + 1 + 2 + 3 = 2
(mod 4). Similarly for the columns. Since each entry is the sum
of its row and column indices, the entries sum to 2 + 2 = 0
(mod 4). Thus the entries cannot be {0, 1, 2, 3}.
More generally, the Cayley table of a cyclic group of even order
has no transversal.



Complete mappings

Let G be a group. A complete mapping of G is a bijective map
φ : G→ G such that the map ψ defined by ψ(x) = xφ(x) is also
a bijection.
Given a transversal in the Cayley table of G, define φ and ψ by
the rule that φ(g) and ψ(g) are the column label and entry of
the transversal cell in row g. Then φ is a complete mapping as
above.
Also, if φ and ψ are as above, then the array with (g, h) entry
gψ(h) is a Latin square, which is an orthogonal mate for the
Cayley table.
Thus the following are equivalent:
I the Cayley table of G has a transversal;
I the Cayley table of G has an orthogonal mate;
I G has a complete mapping.



The Hall–Paige conjecture

In 1955, Marshall Hall Jr and Lowell J. Paige made the
following conjecture:

Conjecture

A finite group G has a complete mapping if and only if the Sylow
2-subgroups of G are trivial or non-cyclic.
They proved the necessity of their condition, and its sufficiency
in a number of cases, including soluble groups and symmetric
and alternating groups.
Hall was a well known group theorist and combinatorialist.
Paige was much less well known: he was a student of Richard
Bruck, had 6 students at UCLA, and has 18 papers (including
his thesis on neofields) listed on MathSciNet.



Proof of the Hall–Paige conjecture

The Hall–Paige conjecture was proved in 2009 by Stuart
Wilcox, Anthony Evans, and John Bray.
Wilcox showed that its truth for all groups follows from its
truth for simple groups, and proved it for groups of Lie type,
except for the Tits group 2F4(2)′. (The first two types, cyclic and
alternating, are covered by Hall and Paige.)
Evans dealt with the Tits group and 25 of the 26 sporadic
groups.
Bray dealt with the final group, the Janko group J4.
The papers of Wilcox and Evans were published in the Journal
of Algebra in 2009. But Bray’s work has was not published at the
time. (It has now appeared, together with the following
discussion on synchronization, in the memorial issue of the
Journal of Algebra for Charles Sims.)



Latin square graphs

Let L be a Latin square of order n, and Γ its Latin square graph.
For n > 2, this graph has clique number n: any row, column or
letter is a clique.
Also, the chromatic number is n if and only if A has an
orthogonal mate:

e a b c
a e c b
b c e a
c b a e



Diagonal groups

We saw that 3-factor diagonal groups are automorphism
groups of the Latin square graphs associated with Cayley
tables of finite simple groups.

Proposition

The group D(T, 3) is non-synchronizing.

Proof.
By Burnside’s Transfer Theorem, a non-abelian simple group
cannot have cyclic Sylow 2-subgroups. So by Hall–Paige, the
Latin square graph of its Cayley table has clique number equal
to chromatic number.
With a little more effort, we have:

Theorem
The diagonal group D(T, r) is non-synchronizing for r ≥ 3.



Other properties

Knowledge of permutation groups has been used in studying
other properties of transformation semigroups. Let S be a
semigroup.

I an element a ∈ S is regular if it has a quasi-inverse b,
satisfying aba = a (and, without loss of generality, also
bab = b);

I S is regular if all its elements are regular;
I an element e ∈ S is an idempotent if e2 = e;
I S is idempotent-generated if all its elements are products

of idempotents.



Transformation semigroups and permutation groups

A transformation semigroup S may have a permutation group
G as its group of units; but whether or not this holds, it will
have a permutation group G as its normaliser in the symmetric
group.

Problem
How do properties of G influence S?
This problem goes back to the early days of semigroup theory.
But little progress was made, because of lack of information
about groups. The situation is different now. Here is a recent
result I proved with João Araújo and Wolfram Bentz:

Theorem
Let S be a transformation monoid, G its normaliser in the symmetric
group. If SG is regular, then S is regular.



The first breach in the wall

Things began with a paper of Araújo, Mitchell and Schneider in
2011. Which permutation groups G on Ω have the property
that, for any transformation a on Ω which is not a permutation,
one of the semigroups 〈G, f 〉, 〈G, f 〉 \G, or 〈f g : g ∈ G〉 is
regular, or idempotent generated?
It turns out that the answer is the same for all three
semigroups, except that 〈G, f 〉 is not idempotent-generated for
non-trivial G, since the only idempotent in G is the identity.
For “regular”, the necessary and sufficient condition is that G is
the symmetric or alternating group or one of nine specific
groups with degrees from 5 to 9 inclusive. For
“idempotent-generated”, (excluding the semigroup 〈G, f 〉), the
condition is that G is the symmetric or alternating group or one
of three specific groups of degrees 5 or 6.
These theorems are significant extensions of earlier results of
Howie, Symons, Levi and McFadden.



Regularity

The image of a transformation is as usual; its kernel is the
partition of Ω into inverse images of points in the image.
If b is a quasi-inverse of a, then b must map the image of a to a
transversal for the kernel of a. If a is regular in 〈G, a〉, it can be
shown that there must be an element of G mapping the image
of a to a transversal for the kernel of a.
Accordingly, we say that a permutation group G on Ω has the
k-universal transversal property, or k-ut for short, if for every
k-subset A and k-partition P of Ω, there is an element of G
mapping A to a transversal for P.
It follows from what is said above that every rank-k map f is
regular in 〈G, f 〉 if and only if G has the k-ut. But much more is
true . . .



The k-ut property and regularity

João Araújo and I showed the following result.

Theorem
Let n ≥ 5 and 2 ≤ k ≤ n/2. If G is a permutation group of degree n
with the k-ut property, then G has the (k− 1)-ut property.
This resembles the result of Livingstone and Wagner stating
that under the same conditions a k-homogeneous group of
degree n is (k− 1)-homogeneous. However the proof is rather
more complicated than theirs.
The implication of this is:

Corollary

Let n ≥ 5 and 2 ≤ k ≤ n/2. Suppose that G has the k-ut property,
and let f be a transformation of rank k. Then 〈G, f 〉 is regular.
The earlier analysis shows that elements of rank k in 〈G, f 〉 are
regular. But by the theorem, for l < k, G also has the l-ut
property, and so elements of smaller rank are also regular.



The case k = 2

For 2 < k < n/2, the k-ut property implies (k− 1)-homogeneity
with known exceptions; these groups are known, and in
principle a classification of groups with k-ut can be done
(though significant difficulties remain). However,

Theorem
For n > 2, the 2-ut property is equivalent to primitivity.
For a G-orbit on 2-sets is the edge set of an (undirected) orbital
graph; it contains a transversal to every 2-partition if and only
if it is connected. Now G is primitive if and only if all orbital
graphs are connected.



The Road Closure Conjecture

A primitive permutation group G on Ω has the road closure
property if, given any orbit O of G on 2-sets, and any proper
block of imprimitivity B for G in its action on O, the graph with
vertex set Ω and edge set O \ B is connected. In other words, if
workmen dig up the edges in the block B, the orbital graph
remains connected.
Non-basic primitive groups fail the to have the road closure
property:

r r r rr r r rr r r rr r r r

The automorphism group has two blocks of imprimitivity on
edges, the horizontal and the vertical edges. If workers dig up
all the vertical roads, the network becomes disconnected.



Idempotent generation

Idempotent generation of 〈G, a〉 \G is stronger than regularity
of 〈G, a〉. The case that has received most attention is k = 2. The
connection is given by the following theorem.

Theorem
The permutation group G on Ω has the property that 〈G, a〉 \G is
idempotent-generated for any rank 2 map a if and only if G has the
road closure property.
So we would like to know: which primitive groups have the
road closure property?



The road closure property

Primitive groups with the road closure property must be basic.
A primitive group which has an imprimitive normal subgroup
of index 2 fails the road closure property. This accounts for
most of the basic groups which fail to have the property.
But there are others, known examples related to triality, and
potential examples of almost simple groups with “novelty”
maximal subgroups of certain types. Work to classify these is in
progress. I hope it will be complete by the end of this INI
programme.
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