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Graphs and groups

“Graphs and groups” is a very big topic; there are links in both
directions between these two areas. Let me begin by briefly
mentioning two things that I will not be talking about.

Every group is the automorphism group of a graph, as
Frucht showed in 1939. Indeed, many restrictions can be
put on the graph, such as specifying the valency,
connectivity, or chromatic number, and the result remains
true.

Several of the sporadic simple groups were first
constructed as groups of automorphisms of certain graphs;
the Higman–Sims group was a famous example. (The
graph had been constructed 12 years earlier by Dale
Mesner, but he did not know about 3-designs and Mathieu
groups, which make the job much easier, and he did not
investigate the automorphism group.)



My topic is more specific. I will mostly talk about graphs
whose vertex set is a group G, and where the graph reflects
structural properties of G. There are three main areas:

Cayley graphs, invariant under translation by group
elements (and hence vertex-transitive);

graphs defined more directly, and invariant under
automorphisms of the group, such as the commuting
graph or generating graph;

other graphs related to the group (but not having the
group elements as vertices) giving structural information,
such as the Gruenberg–Kegel graph or the intersection
graph.



Caveats

Several of these graphs were defined first for semigroups. I
will not consider semigroups here. Note that many of the
problems I raise can be asked also for semigroups, and
other interesting questions arise too.

I also cannot cover infinite groups here, apart from an
occasional brief remark, though there are many hard and
interesting problems there.

Reluctantly I also omit Cayley graphs: their study includes
all of geometric group theory.



The commuting graph

I begin with the example which is easiest to define.
In a finite group, the relation of commuting between two
elements (gh = hg) is symmetric, so we can use it to define a
graph.
Let G be a group. The commuting graph of G is the graph with
vertex set G, in which two vertices g and h are joined if gh = hg.
WARNING: I will slightly modify the definition shortly . . .
As defined, the graph has a loop at each vertex, since any
element commutes with itself. Also, elements in the centre
Z(G) of G are joined to all vertices.



Examples

If G is abelian, then its commuting graph is complete.
The two non-abelian groups of order 8 (the dihedral and
quaternion groups) have isomorphic commuting graphs, as
shown. The groups are 〈a, b : a4 = 1, b2 = 1, b−1ab = a−1〉 and
〈a, b : a4 = 1, b2 = a2, b−1ab = a−1〉. Elements of the centre are
coloured red. Loops have not been drawn.
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Random walk on the commuting graph

One remarkable property of the commuting graph is due,
essentially, to Mark Jerrum:

Theorem
The limiting distribution of the random walk on the commuting
graph of G is uniform on the conjugacy classes.
The random walk moves at discrete time steps; at each step, if
you are at a vertex, you choose a neighbouring vertex
uniformly at random and move there. I will not explain here
the theory of random walks. If you know it, the proof is a
simple exercise; if you don’t, please take it on trust!
The conclusion of the theorem means that the probability of
being at a vertex g at time t tends to a limit as t→ ∞, the limit
being inversely proportional to the size of the conjugacy class
containing g. So you are equally likely to be in any conjugacy
class.



Application

There are groups in which some conjugacy classes are much
smaller than others. (For a simple example, consider the
symmetric group Sn. The transpositions form a conjugacy class
of size n(n− 1)/2, while the n-cycles form a class of size
(n− 1)!. Very often, interesting elements lie in small classes.
In computational group theory, it may happen that we have a
group, and wish to find a representative of a very small
conjugacy class. Simply choosing elements at random will be
very inefficient, like looking for a needle in a haystack.
However, a random walk on the commuting graph “amplifies”
the small classes and makes it easier to find elements in these
classes.



General questions
What questions should we ask about a graph? Here are some:

Does it have isolated vertices, or vertices joined to all
others?

Is it connected? If so, what is its diameter? If not, how
many connected components does it have, and what are
their diameters?

Any other graph-theoretic question, e.g. is it Hamiltonian,
what is its chromatic number, what is its domination
number, is it perfect, etc.

Does the graph determine the group, or some of its
properties?

In the case of the commuting graph, connectedness has a very
simple positive answer: since elements of the centre are joined
to everything, the diameter is at most 2.
So to make the question less trivial, we redefine the commuting
graph so that the vertex set is G \ Z(G).



Diameter of the commuting graph

To reiterate: we define the commuting graph to have vertex set
G \ Z(G); x ∼ y if xy = yx.

Theorem (Giudici and Parker)

There is no upper bound for the diameter of the commuting graph of a
finite group; for any given d there is a 2-group whose commuting
graph is connected with diameter greater than d.
On the other hand:

Theorem (Morgan and Parker)

Suppose that the finite group G has trivial centre. Then every
connected component of its commuting graph has diameter at
most 10.



Is a non-abelian group determined by its commuting
graph?

The answer is no, in general. The two non-abelian groups of
order 8 (the dihedral and quaternion groups) each have centre
of order 2, and non-central elements have centraliser of order 4.
So in each case the commuting graph consists of three disjoint
edges. So the question is:

Question
Which non-abelian groups G are determined up to isomorphism by
their commuting graphs?
One could ask something weaker. Does the commuting graph
of G determine the order of G? (Note that the number of
vertices of the graph is |G| − |Z(G)|.)
I do not know a counterexample to this. It is known to be true
for many groups.



The Gruenberg–Kegel graph

A graph with connections to the commuting graph is the
Gruenberg–Kegel graph of the group G, also known as the
prime graph. Its vertices are the prime divisors of |G|; there is
an edge from p to q if and only if G contains an element of order
pq.
Gruenberg and Kegel introduced this graph, in an unpublished
manuscript in 1975, in the study of integral representations of
groups. They noted that groups whose GK graph is
disconnected have a very restricted structure. This was worked
out in detail by Williams in 1981 except for groups of Lie type
in characteristic 2 (the work was completed by Kondrat’ev in
1989, and some errors corrected by Kondrat’ev and Mazurov in
2000).



The GK graph and the commuting graph

Proposition

Let G be a finite group with Z(G) = 1. Then the commuting graph of
G is connected if and only if the GK graph is connected.
The proof does not use the Classification of Finite Simple
Groups, or even the structure of groups with disconnected GK
graph. I outline it on the next three slides.



Proof

Suppose first that Z(G) = 1 and the commuting graph is
connected. Let p and q be primes dividing |G|. Choose
elements g and h of orders p and q respectively, and suppose
their distance in the commuting graph is d. We show by
induction on d that there is a path from p to q in the GK graph.
If d = 1, then g and h commute, so gh has order pq, and p is
joined to q.



So assume the result for distances less than d, and let
g = g0, . . . , gd = h be a path from g to h.
Let i be mimimal such that p does not divide the order of gi (so
i > 0). Now some power of gi−1, say ga

i−1, has order p, while a
power gb

i of gi has prime order r 6= p.

r r r r r r rg = g0 g1 gi−1 gi gd = h
p pa rb qr rA
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Orders written in red under the vertices

The distance from gb
i to gd is at most d− i < d, so there is a path

from r to q in the GK graph. But ga
i−1 and gb

i commute, so p is
joined to r.



For the converse, assume that the GK graph is connected.
Note first that for every non-identity element g, some power of
g has prime order, so it suffices to show that all elements of
prime order lie in the same connected component of the
commuting graph. Also, since a non-trivial p-group has
non-trivial centre, the non-identity elements of any Sylow
subgroup lie in a single connected component.
Let C be a connected component. Connectedness of the GK
graph shows that C contains a Sylow p-subgroup for every
prime p dividing |G|. Also, every element of C, acting by
conjugation, fixes C. It follows that the normaliser of C is G,
and hence that C contains every Sylow subgroup of G, and thus
contains all elements of prime order, as required.



About the GK graph

There has been a lot of research on the GK graph of a finite
group. Much of this is due to group theorists in Yekaterinburg
and Novosibirsk.
Some of the questions considered are:

Which groups are characterised by their GK graphs?

Which groups are characterised by their labelled GK
graphs, where the vertices are labelled with the
corresponding primes, and how many different labellings
can a given graph have?



To mention just one example: the paw, or balalaika, consists of
a triangle with a pendant vertex. Among groups whose GK
graph is isomorphic to the paw are the alternating group A10
and the automorphism group of the sporadic Janko group J2.
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Note that the same primes occur but 2 and 3 swap places.



The enhanced power graph

I will reverse the historical order here; the power graph was
defined before the enhanced power graph.
Also, I will change my conventions once again. In almost all
the graphs I will define, the identity element of the group plays
a special role. So from now on, I will always take the vertex set
to be G \ {1}, the set of non-identity elements.
In the enhanced power graph, we define x and y to be adjacent
if there is a vertex z such that both x and y are powers of z.
This can be re-phrased: x and y are joined if and only if the
subgroup 〈x, y〉 generated by x and y is cyclic.
With this in mind, note that x and y are joined in the
commuting graph if and only if 〈x, y〉 is abelian.
Thus the enhanced power graph is a spanning subgraph of the
commuting graph.



The power graph

The directed power graph of a group G is defined as follows:
the vertex set is G \ {1}; there is an arc x→ y if y is a power of x.
Note that there may be arcs in both directions: this holds if and
only each of x and y is a power of the other, that is, 〈x〉 = 〈y〉.
The power graph is obtained from the directed power graph by
ignoring the directions on the edges (and double edges where
they occur): that is, x ∼ y if and only if one of x and y is a
power of the other.
We see that the power graph is a spanning subgraph of the
enhanced power graph.



Some observations

Different groups may have isomorphic power graphs. For
example, let G be a group with exponent 3 (of order 3d, say).
Then the power graph of G consists of (3d − 1)/2 disjoint
edges. So any other group of exponent 3 with the same order
has isomorphic power graph.
Things are even worse in the infinite case. The Prüfer group
Cp∞ has the property that its power graph is a countable
complete graph; we cannot even detect the prime p.
From now on I stick to the finite case. Here are some
observations.

The power graph of G is complete if and only if G is cyclic
of prime power order.

Otherwise, the vertex g is joined to all others if and only if
either G is cyclic and g is a generator, or G is a generalized
quaternion group and g the central involution.



Determining the directions

The power graph of G may not determine G. But does it
determine the directed power graph?
It does not determine it uniquely. For example, if G = C6, the
power graph has five vertices, two with valency 4 (these are the
generators), two with valency 3 (the elements of order 3), and
one of valency 2 (the element of order 2). But we cannot decide
which element of order 3 is the square of which element of
order 6.
But the following holds:

Theorem
The power graph of a finite group G determines the directed power
graph of G up to isomorphism.
Hence the power graph determines the enhanced power graph
up to isomorphism.



A variation

We saw that the enhanced power graph and the commuting
graph have similar definitions: adjacency of x and y can be
defined in terms of the subgroup 〈x, y〉 they generate: cyclic for
the enhanced power graph, abelian for the commuting graph.
This suggests a raft of open questions.

Question
Let P be a property of groups. For a finite group G, define a graph as
follows: the vertex set is G \ {1}, and x and y are joined if and only if
the subgroup 〈x, y〉 has property P.
For different choices of P, what can be said about this graph?
The properties of nilpotence or solubility might be good places
to start. Essentially nothing is known; the field is open!



The generating graph

Another variant is as follows:
The generating graph of G is the graph with vertex set G \ {1},
in which x and y are joined if and only if 〈x, y〉 = G.
Note that this graph has no edges if G cannot be generated by
two elements; it has loops if and only if G is cyclic. These cases
are not very interesting.
This graph is of great interest. Since the Classification of Finite
Simple Groups (CFSG), it is known that every non-abelian
finite simple group can be generated by two elements.
Moreover, a number of results assert that there is a great deal of
freedom in choosing the two generators. For example, any
non-identity element lies in a 2-element generating set.



The best result is in a recent preprint by Burness, Guralnick and
Harper:

Theorem
For a finite group G, the following three conditions are equivalent:

the generating graph has no isolated vertices;

any two vertices of the generating graph have a common
neighbour;

every proper quotient of G is cyclic.

So in particular the first two properties hold for the generating
graph of a non-abelian simple group.



A hierarchy
Part of the reason for choosing the vertex set of these graphs to
be G \ {1} is to allow them to be compared.
Given a group G, consider the following graphs:

the null graph on G \ {1};

the power graph;

the enhanced power graph;

the commuting graph;

the non-generating graph (the complement of the
generating graph);

the complete graph.
Each of these graphs is a spanning subgraph of the next, except
possibly for the commuting and non-generating graphs.
Indeed the commuting graph is a spanning subgraph of the
non-generating graph if G is non-abelian.



Equality

Question
When are two consecutive graphs in the hierarchy equal?
This question has been answered completely for finite groups.
In reverse order,

The non-generating graph is complete if and only if G is
not 2-generated.

For non-abelian groups G, the commuting graph is equal
to the non-generating graph if and only if G is minimal
non-abelian, that is, G is non-abelian but every proper
subgroup is abelian.

The minimal non-abelian groups were determined by Miller
and Moreno in 1903. There are two types; one has prime power
order, and the other has order pmqn, where p and q are primes
and q is a primitive divisor of pm − 1.



The next two cases are due to Aalipour, Akbari, Cameron,
Nikandish and Shaveisi.

The commuting graph is equal to the enhanced power
graph if and only if G contains no subgroup isomorphic to
Cp × Cp for p prime; equivalently, the Sylow subgroups of
G are cyclic or generalized quaternion.

The groups G which occur here are either cyclic p-groups for
some prime p, or have the property that O(G) (the largest
normal subgroup of G of odd order) is metacyclic, and G/O(G)
is a group with a unique involution (so the quotient by this
involution is PSL(2, p) or PGL(2, p) for p an odd prime power,
or a cyclic or dihedral 2-group).



The enhanced power graph is equal to the power graph if
and only if G contains no cyclic subgroup of order pq,
where p and q are distinct primes.

This condition says that the GK graph of G is a null graph.
Using results on groups whose prime graph is disconnected, it
is possible to study these. There are some interesting examples,
including the simple groups A5, A6, PSL(2, 7), PSL(2, 8),
PSL(2, 17), PSL(3, 4) and Sz(8). Natalia Maslova I hope to
publish the complete classification soon.
The last two classes are rather complicated, but it is simpler to
give the list of finite groups with power graph equal to
commuting graph. These are cyclic groups of prime power
order, generalized quaternion groups, and semidirect products
of Cpa by Cqb where p and q are primes, qb | p− 1 and Cqb acts
faithfully on Cpa .



Finally, and trivially,

the power graph of G is null if and only if G is the trivial
group; and the reduced power graph is null if and only if
G is an elementary abelian 2-group.

For it is clear that if there is an element of order greater than 2
in the group, then there is an edge in the power graph.



Next steps

These results on the hierarchy suggest a couple of questions.

Question
Do similar results hold for infinite groups?
Aalipour et al. have some results for infinite soluble groups
with power graph equal to commuting graph.

Question
If successive graphs in the hierarchy are not equal, what can be said
about their difference?
The difference between the complete graph and the
non-generating graph is, of course, the generating graph, about
which a lot is known (as already mentioned).



The difference between the non-generating graph and the
commuting graph (for non-abelian groups) has been
considered by Saul Freedman. His thesis contains detailed
results about connected components and diameter of these
graphs, which I cannot summarise here. The results include a
complete analysis for finite nilpotent groups.
For the next two cases, the difference between commuting
graph and enhanced power graph, or enhanced power graph
and power graph, nothing is known, the field is wide open.
A further question:

Question
Does the random walk on any of these graphs have interesting
properties?



Final remark on the hierarchy

For all the graphs Γ(G) in the hierarchy given earlier except the
non-generating graph, the following property holds:

The induced subgraph of Γ(G) on any subgroup H of
G is equal to Γ(H).

This is false for the non-generating graph. In that case, the
induced subgraph on H is complete, since two elements of H
generate a proper subgroup of G. Moreover, these complete
subgraphs on proper subgroups of G cover all the edges of the
graph.
Similarly, in the commuting graph (resp., the enhanced power
graph), the induced subgraphs on the abelian (resp. cyclic)
subgroups are complete and cover all edges.



The intersection graph

A related graph that has been investigated is the intersection
graph of a group (usually but not always assumed finite). The
vertices are not elements, but non-trivial proper subgroups of
G; two vertices are adjacent if their intersection is non-trivial.
This is related to the generating graph because two elements
are adjacent in the non-generating graph if and only if they are
contained in a proper subgroup, as noted on the preceding
slide.



Three remarks:

The intersection graph has at least one vertex if and only if
G is not cyclic of prime order.

In a finite group, every proper subgroup is contained in a
maximal subgroup; so, if any two maximal subgroups lie
at distance at most d, then the diameter of the graph is at
most d + 2.

Suppose that G is not a dihedral group. Then any two
subgroups of even order lie at distance at most 2; for each
contains an involution, and two involutions generate a
dihedral group.



Diameter
The intersection graph was introduced by Csákány and Pollák
in 1969. For non-simple groups, they determined when the
graph is connected, and showed that in these cases its diameter
is at most 4.
For simple groups, Shen proved connectedness in 2010; in the
same year Herzog, Longobardi and Maj bounded the diameter
by 64; and Ma reduced the bound to 28 in 2016. This year,
Freedman showed:

Theorem
For a non-abelian finite simple group G, the intersection graph has
diameter at most 5. The bound 5 is attained by the Baby Monster
group; any other group achieving the bound must be a unitary group
PSU(n, q) with n prime.

Question
It is known that for unitary groups the diameter can be 3, 4 or 5.
Determine which groups realise each possible value.



Perfectness

One of the most important properties of the power graph is
that it is perfect. (A graph is perfect if every induced subgraph
has clique number equal to chromatic number.) The proof
works not only for groups but for semigroups, and indeed for
all power-associative magmas; and it holds for infinite groups
etc. if we understand an infinite graph to be perfect if all its
finite induced subgraphs are.
The reason is that the directed power graph, with a loop at each
vertex, is a partial preorder, that is, a reflexive and transitive
relation; and the power graph is its comparability graph, that
is, two vertices are adjacent if and only if they are related in the
preorder.

Theorem
The comparability graph of a partial preorder is perfect.



Proof

Let→ be a partial preorder on X. Define a relation ≡ by the
rule that x ≡ y if and only if x→ y and y→ x. Then ≡ is an
equivalence relation. Now define a relation ≤ on the
equivalence classes by the rule that [x] ≤ [y] if and only if
x′ → y′ for some (and hence every) x′ ∈ [x] and y′ ∈ [y]. Then ≤
is a partial order.
Now we refine the partial preorder to a partial order by taking
an arbitrary total ordering of each ≡-class. This does not
change the comparability graph.
By the easy half of Dilworth’s Theorem, the comparability
graph of a partial order is perfect.

Corollary

The power graph of a group (or semigroup, or even power-associative
magma) is perfect.



A problem
The enhanced power graph and the commuting graph can fail
to be perfect. Consider, for example, the commuting graph of
S5, and look at the transpositions (1, 2), (3, 4), (5, 1), (2, 3) and
(4, 5). The induced subgraph of the commuting graph is a
5-cycle, with clique number 2 and chromatic number 3.
It is easy to modify this example to deal with the enhanced
power graph, replacing transpositions with cycles of pairwise
coprime lengths.

Problem

Which groups have perfect enhanced power graph?

Which groups have perfect commuting graph?

The groups considered earlier, where the enhanced power
graph or commuting graph are equal to the power graph, have
this property. What others exist? Britnell and Gill have some
results on perfectness of the commuting graph.



Products of graphs

The strong product of two graphs X and Y is the graph whose
vertex set is the Cartesian product V(X)×V(Y), with an edge
from (x1, y1) to (x2, y2) if and only if x1 is equal or adjacent to
x2, and y1 is equal or adjacent to y2, but we don’t have equality
in both. It is denoted by X�Y (the symbol represents the
corresponding product of two copies of K2).
Now it is easy to show that

the commuting graph of G×H is the strong product of the
commuting graphs of G and H;

if the orders of G and H are coprime, then the enhanced
power graph of G×H is the strong product of the
enhanced power graphs of G and H.



Perfectness of the enhanced power graph
The enhanced power graphs of finite nilpotent groups have
clique number = chromatic number. When are they perfect?

A nilpotent group is the direct product of its Sylow
subgroups, whose orders are powers of distinct primes.

For a group of prime power order, the enhanced power
graph is equal to the power graph, which is perfect.

The complement of a perfect graph is perfect (the weak
perfect graph theorem of Lovász).

The complement of the strong product of two graphs is the
categorical product of their complements.

Ravindra and Parthasarathy determined conditions for the
categorical product of two graphs to be perfect.

Once we have done nilpotent groups, we may get information
about the GK-graphs of arbitrary groups whose enhanced
power graphs are perfect.



Other properties

A large number of other graph-theoretic properties are listed in
the survey article by Abawajy, Kelarev and Chowdhury. Some
extensions to infinite groups are given by Aalipour et al.
For example, the clique number of the enhanced power graph
of a finite group G is equal to the largest order of an element of
G. (This may not be the same as the exponent of G.) This holds
also for infinite torsion groups of bounded exponent.
Pallabi Manna, Ranjit Mehatari and I are conducting a study of
groups whose power graphs belong to various well-studied
classes defined by forbidden induced subgraphs. We have
complete results for nilpotent groups, which I describe on the
next two slides.



Forbidden induced subgraphs

A cograph is a graph containing no 4-vertex path as induced
subgraph. Cographs form the smallest nonempty class of
graphs closed under complement and disjoint union.

Theorem
If G is a finite nilpotent group, then the power graph of G is a cograph
if and only if G is either of prime power order, or a cyclic group whose
order is the product of two distinct primes.
A chordal graph is a graph containing no chordless cycle of
length greater than 3 as an induced subgraph.

Theorem
If G is a finite nilpotent group, then the power graph of G is chordal if
and only if either G is of prime power order, or |G| has two prime
divisors and one of its Sylow subgroups is cyclic, the other of prime
exponent.



Threshold and split graphs

A threshold graph is a graph containing no induced path or
cycle on 4 vertices and no two disjoint unconnected edges.
Threshold graphs form the smallest non-empty graph class
closed under the operations of adding an isolated vertex or a
vertex joined to all others.
A split graph is a graph whose vertex set is the disjoint union of
a set inducing a complete graph and a set inducing a null
graph. The split graphs form a class with nice algorithmic
properties: for example a split graph can be recognised by its
degree sequence. A graph is split if and only if it has no
induced cycle of length 4 or 5 and no two disjoint unconnected
edges.
We can determine all groups whose power graph is threshold
or split.



Theorem
The following conditions on a finite group G are equivalent:

P(G) is a threshold graph;

P(G) is a split graph;

P(G) contains no two disjoint unconnected edges;

G is one of: a cyclic group of prime power order; an elementary
abelian 2-group; a dihedral 2-group; a cyclic group of order 2p,
or a dihedral group of order 2pd or 4p, where p is an odd prime
and d ≥ 1.

These are precisely the groups G having no pair (H, K) of
subgroups such that both H \ K and K \H contain elements of
order greater than 2.



Some number theory

Here is an example. When is P(PSL(2, q)) a cograph?
Let q be a power of 2. The power graph of PSL(2, q) is the
disjoint union of copies of the power graph of an elementary
abelian group of order q and cyclic groups of orders q− 1 and
q + 1. (I assume here that the identity is removed.)
The case where one of these is a prime corresponds to Fermat
and Mersenne primes, and the case where one is a prime power
gives the Catalan equation, whose only solution is 32 = 1 + 23.
To determine other groups PSL(2, q) for even q whose power
graph is a cograph, we have to solve the following problem:



Problem
For which positive integers d is it the case that both 2d − 1 and 2d + 1
are the product of at most two primes? In particular, are there
infinitely many?
The values of d up to 200 for which this holds are 1, 2, 3, 4, 5, 7,
11, 13, 17, 19, 23, 31, 61, 101, 127, 167, 199.



Automorphism groups

The study of the automorphism groups of the graphs defined
here is bedevilled by the fact that they have many “twins”,
pairs of vertices with the same neighbourhood.
For example, consider the generating graph of the alternating
group A5. Two elements which generate the same cyclic
subgroup have the same neighbourhood. Thus we can find six
disjoint sets of four vertices, and ten disjoint pairs of vertices,
which are indistinguishable; so the automorphism group has a
normal subgroup (S4)

6 × (S2)10 which is of no interest but
simply slows down the computation.
So for questions about automorphisms, it may be sensible to
factor out this normal subgroup before proceeding.



Automorphism groups of power graphs

A paper by Ashrafi, Gholami and Mehranian in 2017 considers
this topic.
Let F be the class of groups obtained from the trivial group by
the two operations “direct product” and “wreath product with
a symmetric group”.
Ashrafi et al. asked whether the automorphism group of the
power graph of any finite group belongs to F .
The answer is NO; the Mathieu group M11 provides a
counterexample.



The power graph of M11

The reduced power graph of M11 has the following connected
components:
I 144 complete graphs of size 10, corresponding to elements

of order 11;
I 396 complete graphs of size 4, corresponding to elements

of order 5;
I a single connected component ∆ on the remaining 4895

vertices.
If we take ∆, and first factor out the relation “same closed
neighbourhood”, and then factor out from the result the
relation “same open neighbourhood”, we obtain a connected
graph on 1210 vertices whose automorphism group is M11.



On the positive side, we have the following result:

Theorem
The automorphism group of any cograph belongs to F .
This property does not characterise cographs: automorphism
groups of trees belong to F for structural reasons, and
automorphism groups of almost all random graphs belong to
F for the stupid reason that almost all random graphs have
trivial automorphism group.

Corollary

If G is a finite group whose power graph is a cograph, then the
automorphism group of the power graph belongs to F .

Problem
For which finite simple groups G is it true that Aut(G) is a
homomorphic image of the automorphism group of the power graph
of G?
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for your attention. Stay well!


