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Background 1

Cheryl Praeger and Csaba Schneider started this research some
time ago.

In Shenzhen in 2018, they invited Rosemary Bailey and me to
join them.



Background 2

Things went on slowly, but at the six-month programme on
groups at the Isaac Newton Institute in Cambridge, we hoped
to bring it to a conclusion.

But the coronavirus had other ideas. So we put it on hold and
all went home.



Background 3

Rosemary and I were in the fortunate position that we could
continue working on the problem in the old-fashioned way. I
had a vision of what the main result should be, and, thanks
very largely to Rosemary, we were able to carry this through.
So, in this talk, I want to tell you about how to recognise
structures which admit diagonal groups as groups of
automorphisms.
The motivating example comes from the 2-dimensional case. If
T is a group and D(T, 2) the 2-dimensional diagonal group
built from T, then D(T, 2) is precisely the automorphism group
of the Latin square graph associated with the Cayley table of T.
This is joint work of the four of us (RAB, PJC, CEP and CS).



The case m = 1

I will not be talking about this case, but I mention it now.
In 1968, Peter Neumann, Charles Sims and James Wiegold
published a paper with the wonderful title “Counterexamples
to a theorem of Cauchy”.
Cauchy had “proved” that, if a primitive group has degree a
prime number plus one, then the group must be doubly
transitive. Neumann, Sims and Wiegold pointed out that, if T is
a finite simple group and G = T× T acts on T, the first factor
by left multiplication by the inverse, the second by right
multiplication, then G is primitive but not doubly transitive.
There are many simple groups whose order is one more than a
prime, starting with A5.
A challenge to number theorists: Are there infinitely many
finite simple groups which give counterexamples to Cauchy’s
theorem in this way?



The O’Nan–Scott Theorem

Theorem
A finite primitive permutation group is of one of the following types:
affine, wreath product, diagonal, or almost simple.
Affine groups preserve affine spaces; wreath products preserve
Cartesian structures (as we discuss later); almost simple groups
form a ragbag, and there is no hope for a uniform description
of the structures they act on.
Our aim is to understand the geometric structure underlying
diagonal groups. But, unlike in the O’Nan–Scott theorem, we
do not assume that these groups are finite or primitive.



Diagonal groups, 1

Let T be a group, and m a positive integer. The diagonal group
D(T, m) has a normal subgroup of the following shape: take the
group Tm+1 (factors numbered from 0 to m) acting on the set Ω
of right cosets of its diagonal subgroup {(t, t, . . . , t) : t ∈ T}.
This group is normalised by further transformations: Aut(T),
acting in the same way on all coordinates; and the symmetric
group Sm+1, permuting the coordinates.
It is more convenient (though we lose some symmetry) to take
a different representation. Every coset of the diagonal group
has a unique representative with the identity in coordinate 0.
We denote this representative by [t1, . . . , tm].



Diagonal groups, 2

I The factors T1, . . . , Tm act as usual by right multiplication:

x ∈ T1 : [t1, t2 . . . , tm] 7→ [t1x, t2, . . . , tm].

I T0 acts by simultaneous left multiplication of all
coordinates by the inverse:

x ∈ T0 : [t1, t2, . . . , tm] 7→ [x−1t1, x−1t2, . . . , x−1tm].

I Automorphisms act in the same way on all coordinates.
I Sm acts by permuting the coordinates.
I The transposition τ of coordinates 0 and 1 acts as

τ : [t1, t2, . . . , tm] 7→ [t−1
1 , t−1

1 t2, . . . , t−1
1 tm].



Diagonal groups, 3

This defines the group D(T, m) as a permutation group on Tm

for any group T and positive integer m. The “simple diagonal”
type in the O’Nan–Scott Theorem is obtained when T is a finite
simple group.
As said before, I will not be discussing the case m = 1, where
there is no geometry to help us; we assume that m ≥ 2.
Our goal in setting out was the following:

Give a combinatorial description of a structure with auto-
morphism group induced by D(T, m), so that the group T
does not have to be built in to the construction, but emerges
naturally from the combinatorics.

In projective geometry, the projective planes are “wild”, but
higher dimensional spaces are coordinatised by a division ring.
We will see a similar phenomenon here.



Partitions

A partition of Ω can be thought of in any of three ways:
I a set of non-empty, pairwise disjoint subsets of Ω whose

union is Ω;
I the set of equivalence classes of an equivalence relation on

Ω;
I the kernel of a function F on Ω, that is, the set of inverse

images of points in the range of F.
The set P(Ω) of partitions of Ω is partially ordered by
refinement: P � Q if every part of P is contained in a part of Q.



The partition lattice

With this order, P(Ω) is a lattice: any two partitions P and Q
have a unique infimum or meet P∧Q, and a unique supremum
or join P∨Q.

I P∧Q is the partition of Ω whose parts are all non-empty
intersections of a part of P and a part of Q.

I P∨Q is the partition into connected components of the
graph in which two points are adjacent if they lie in the
same part of either P or Q.

A subset of P(Ω) is a sublattice if it is closed under the meet
and join operations of P(Ω).
We also require the notion of a join-semilattice, closed under
join but maybe not under meet.



Coset partitions

Let G be a finite group. For each subgroup H of G, consider the
partition PH of G into right cosets of H. We call this a coset
partition.
Now, if H and K are subgroups of G, then we have
I PH � PK if and only if H ≤ K;
I PH ∧ PK = PH∩K;
I PH ∨ PK = P〈H,K〉.

So the collection of all coset partitions of G forms a sublattice of
P(G) which is isomorphic to the subgroup lattice of G, under
the map H 7→ PH.



Cartesian decompositions

If you want to know everything about these, here is the place to
look:

I will tell you just what you need here.



Cartesian lattices, 1

Suppose that Ω = An for some alphabet A, with |A| > 1. For
I ⊆ {1, . . . , n}, let QI be the partition of Ω defined by the
equivalence relation ≡I, where a ≡I b if aj = bj for all j /∈ I.
The partitions QI for I ⊆ {1, . . . , n} form a sublattice of P(Ω);
indeed, the map I 7→ QI is an isomorphism from the Boolean
lattice of subsets of {1, . . . , n} to this sublattice. We call such a
lattice a Cartesian lattice on Ω. Its dimension is defined to be n.
An alternative approach uses the Hamming graph Ham(n, A),
with vertex set An, two vertices joined if they have Hamming
distance 1, that is, they differ in just one coordinate.
The minimal (non-trivial) elements of the Cartesian lattice have
the form Qi, which is a partition into maximal cliques of the
Hamming graph. So the Cartesian lattice and the Hamming
graph determine each other.



Cartesian lattices, 2

In view of the preceding remark, the Hamming graph and the
Cartesian lattice have the same automorphism group, namely,
the wreath product Sym(A) Wr Sn.
We take Cartesian lattices to be the geometries associated with
wreath products in the O’Nan–Scott theorem.
It is perhaps worth noting that the notions of Cartesian lattice
and Hamming graph can be generalised, to the mixed alphabet
case: we take Ω = A1 × · · · ×An, and proceed in the same way.
(In this case the automorphism group is not the wreath product
as above, since coordinates associated with alphabets of
different sizes are not interchangeable.)
However, this complication does not arise in what we are going
to do.



Latin squares, 1

You probably think of a Latin square as something like this: a
square array of size n× n filled with letters from an alphabet of
size n, so that each letter occurs once in each row and column.

A B C
B C A
C A B

We are going to give a different definition. Let Ω consist of the
n2 cells of the array. We have three partitions of Ω: R, the rows;
C, the columns; and L, the letters (the partition into sets of cells
containing the same letter).



Latin squares, 2

A B C
B C A
C A B

1 2 3
4 5 6
7 8 9

I R = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
I C = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}};
I L = {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}.

Together with E (the partition into singletons) and U (the
partition with a single part), these three partitions form a
lattice. It has the very special property that, if one of R, C, L is
omitted, the resulting four partitions form a Cartesian lattice
on Ω.
This property characterises Latin squares.



Latin squares, 3

With the partition definition, we could define an
automorphism of a Latin square to be a permutation of Ω
fixing {R, C, L} setwise. (These mappings are usually called
paratopisms in the Latin squares literature.)
Latin squares are extremely prolific. It is known that the
number of Latin squares of order n grows faster than
exponentially in n2. Moreover, almost all of them have only
trivial paratopism group.
However, one case is interesting to us: the Cayley table of a
group T is a Latin square, and its paratopism group is the
diagonal group D(T, 2) defined earlier.



Diagonal semilattices

Let us return to diagonal groups for a moment. Recall that
D(T, m) acts on Tm, where m factors of the base group Tm+1

each act on the corresponding coordinate of Tm by right
multiplication, while the last factor acts by simultaneous left
multiplication by the inverse.
Let T0, . . . , Tm be these subgroups, and let Qi be the partition of
Tm into cosets of Ti for i = 0, 1, . . . , m.
The join-semilattice generated by Q0, . . . , Qm (it is not a lattice
for m ≥ 3) is an object which we will call a diagonal semilattice
and denote by D(T, m).
Its automorphism group is the diagonal group D(T, m).



The main theorem

Theorem
Let m ≥ 2, and let Q0, Q1, . . . , Qm be partitions of Ω. Suppose that
any m of these partitions generate an m-dimensional Cartesian lattice
on Ω, in which the given partitions are the minimal (non-trivial)
elements.
I If m = 2, then {Q0, Q1, Q2}, together with E and U, form a

Latin square, unique up to isotopism; every Latin square arises
in this way.

I If m ≥ 3, then there is a group T, determined up to isomorphism,
such that the join-semilattice generated by {Q0, . . . , Qm} is the
diagonal semilattice D(T, m).

As promised, for m = 2 the situation is chaotic, but for m ≥ 3
the algebraic structure coordinatising the semilattice (the group
T) emerges naturally from the combinatorics.



The proof

Time does not permit me to go through the whole proof. I hope
that this sketch will suffice.
First, there is nothing to prove if m = 2. Two of the partitions
give Ω the structure of a square grid, and the third partitions it
into the positions of letters; the remaining conditions force the
letters to form a Latin square.
Also, the proof for m ≥ 3 is by induction on m. I will not give
any details about the induction step; the crucial part is starting
the induction at m = 3, where groups first make their
appearance.



Latin cubes, 1
Our hypotheses for m = 3 are equivalent to a certain kind of
Latin cube.
Unfortunately there are several incompatible definitions of
Latin cubes in the literature. I will stick to the one we need.
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Think of a combinatorial cube (3-dimensional array). We shall
regard it as being given by a Cartesian lattice. We call a slice
parallel to one of the coordinate planes a layer, and a line
parallel to one of the coordinate axes a line.
Thus, if Q1, Q2, Q3 are the minimal partitions generating the
Cartesian lattice, then lines are parts of one of these three
partitions, while layers are parts of one of the partitions
Q12 = Q1 ∨Q2, etc.



Latin cubes, 2

Now a Latin cube (of the sort we want) has an additional
partition Q0, which we think of as corresponding to letters
written in the cells of the array. We require that
I each letter occurs exactly once in each layer.

We require another property, which doesn’t have a standard
name, which we call regularity:
I in any two parallel lines, the sets of letters occurring in

cells in those lines are either equal or disjoint.
Most of our proof involves giving a description of all regular
Latin cubes in the above sense: these turn out to be equivalent
to the case m = 3 of the main theorem.



Latin squares and quasigroups
Given a Latin square, we can label the rows, columns and
letters by elements of a set T; then the given square is the
Cayley table of a quasigroup on the set T.
Changing the labellings corresponds to an isotopism of the
quasigroup.
A Latin square is isomorphic to the Cayley table of a group if
and only if it satisfies the quadrangle condition, which I now
describe. Given two rows and two columns, there are four
letters lying in the positions of these rows and columns.
Suppose that another choice of two rows and two columns
gives rise to another set of four letters. We say that the
quadrangle condition holds if, whenever three of the four
letters coincide, then the fourth does also, for all possible
choices. The following result goes back to Frolov (1890):

Theorem
A quasigroup is isotopic to a group if and only if its Cayley table
satisfies the quadrangle condition.



Quasigroups from Latin cubes

Let Q0, . . . , Q3 be partitions of Ω satisfying the hypotheses of
the main theorem. Any three of them generate a Cartesian
lattice, and the fourth gives it the structure of a regular Latin
cube.
We obtain Latin squares as quotients. Pick one of the partitions
Qi. Let Ω be the set of parts of Qi, and for j 6= i, let Qj be the
partition of Ω corresponding to the partition Qi ∨Qj of Ω.
These partitions form a Latin square.
Thus we have four Latin squares, and each allows three choices
of labelling; but because of interdependencies, there are six
labellings which can be chosen independently.



The heart of the proof

We have to show three things:
I these Latin squares satisfy the quadrangle condition, and

hence are isotopic to groups;
I we have six labellings to choose, and this can be done in

such a way that the four groups are all isomorphic, and the
Latin squares are Cayley tables with (x, y) entry x−1y
(this is not the usual Cayley table, but is isotopic to it);

I using this, Ω can be identified with the diagonal
semilattice D(T, 3) over the group T.

At this point, the proof for m = 3 is complete.



The diagonal graph

The diagonal graph stands in a similar relation to a diagonal
semilattice as the Hamming graph does to a Cartesian lattice.
Let Ω be a set, and Q0, . . . , Qm partitions of Ω satisfying the
hypotheses of our main theorem: thus any m of them generate
a Cartesian lattice.
The diagonal graph corresponding to these data has vertex set
Ω, with two vertices adjacent if and only if they lie in the same
part of Qi for some (unique) value of i.
Thus the edges of the graph fall into m + 1 types, so that any m
of these types comprise a Hamming graph Ham(m, |T|).
For m > 2, the diagonal semilattice can be recovered from the
graph, since its maximal cliques are the parts of the partitions
Qi, and we can decide combinatorially whether two maximal
cliques are of the same type. So the automorphism group of the
graph is the diagonal group D(T, m). We denote the graph by
Γ(T, m).



Some examples

In the case m = 2, the graph is precisely the Latin square graph
associated with the Latin square. We ignore this case and
assume that m ≥ 3.
Consider the case |T| = 2. In this case, the Hamming graph is
the m-dimensional cube. The extra edges we have to add to get
the diagonal graph are precisely those joining antipodal
vertices of the cube. So the graph in this case is the folded cube,
and is distance-transitive.
This provides a good model for thinking about these graphs:
the diagonal graph consists of the Hamming graph with some
extra edges joining vertices at maximal distance.



The Hall–Paige conjecture

A complete mapping of a group G is a bijection φ : G→ G such
that the map ψ : G→ G defined by ψ(x) = xφ(x) is also a
bijection. It is well known that the following three conditions
on a group G are equivalent:
I G has a complete mapping;
I the Cayley table of G has a transversal;
I the Cayley table of G has an orthogonal mate.

In 1955, Hall and Paige showed that a group with these
properties has trivial or non-cyclic Sylow 2-subgroups, and
conjectured the converse. This conjecture was proved by
Wilcox, Evans and Bray in 2009, using the Classification of
Finite Simple Groups.



Clique number and chromatic number

In connection with synchronization, Bray et al. showed that, if T
is a finite simple group, and m ≥ 2, then the clique number and
chromatic number of the diagonal graph are both equal to |T|.
We have a conjectured extension to arbitrary finite groups, not
entirely proved yet.

Theorem
Let Γ be the graph Γ(T, m), where m ≥ 2 and T is a finite group.
I The clique number of Γ is |T|.
I If m is odd, then the chromatic number of Γ is |T|.
I If m is even and T has a complete mapping, then the chromatic

number of Γ is |T|.

Problem
Is it true that, for m even, the chromatic number of Γ is equal to |T| if
and only if T has a complete mapping?
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