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Welcome!

We live in strange times – I hope you are all surviving them! If
things had been normal I would have given a talk rather like
this one at the ALCOMA conference in Germany at the end of
March.
But as it happens, things have moved on quite significantly
since then!
The talk will be in three parts:
I a brief introduction to synchronization;
I a proof that one of the classes of primitive permutation

groups, those of diagonal type with at least three factors,
are non-synchronizing (this uses the truth of the
Hall–Paige conjecture, which I will describe);

I a characterisation of the combinatorial structures
preserved by the permutation groups of diagonal type
(very recent, not written up yet!).



The dungeon

You are in a dungeon consisting of a number of rooms. Each
room has two doors, coloured red and blue, which open into
passages leading to another room (maybe the same one). Each
room also contains a special door; in one room, the door leads
to freedom, but in all the others, to death. You have a map of
the dungeon, but you do not know where you are.
Can you escape? In other words, is there a sequence of colours
such that, if you use the doors in this sequence from any
starting point, you will end in a known place?
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You can check that (Blue, Red, Blue) takes you to room 1 no
matter where you start.



Automata

The diagram on the last page shows a finite-state deterministic
automaton. This is a machine with a finite set of states, and a
finite set of transitions, each transition being a map from the set
of states to itself. The machine starts in an arbitrary state, and
reads a word over an alphabet consisting of labels for the
transitions (Red and Blue in the example); each time it reads a
letter, it undergoes the corresponding transition.
A reset word is a word with the property that, if the automaton
reads this word, it arrives at the same state, independent of its
start state. An automaton which possesses a reset word is
called synchronizing.
Not every finite automaton has a reset word. For example, if
every transition is a permutation, then every word in the
transitions evaluates to a permutation.



Automata and transformation monoids

Combinatorially, an automaton is an edge-coloured digraph
with one edge of each colour out of each vertex. Vertices are
states, colours are transitions.
Algebraically, if Ω = {1, . . . , n} is the set of states, then any
transition is a map from Ω to itself. Reading a word composes
the corresponding maps, so the set of maps corresponding to
all words is a transformation monoid on Ω.
So an automaton is a transformation monoid with a
distinguished generating set. It is synchronizing if it contains a
map with rank 1.



Graph endomorphisms

Our graphs are simple (no directions, loops, or multiple edges).
The clique number ω(Γ) of a graph Γ is the number of vertices
in its largest complete subgraph, and the chromatic number
χ(Γ) is the smallest number of colours required for a
vertex-colouring so that adjacent vertices get different colours.
Let Γ and ∆ be graphs. A homomorphism from Γ to ∆ is a map
f from the vertex set of Γ to that of ∆ with the property that, for
any edge {v, w} of Γ, the image {vf , wf} is an edge of ∆.
An endomorphism of Γ is a homomorphism from Γ to itself.
The endomorphisms of a graph form a transformation monoid
on the vertex set. If Γ is not a null graph, then End(Γ) is not
synchronizing, since edges cannot be collapsed.



The obstruction to synchronization

Theorem
Let S be a transformation monoid on Ω. Then S fails to be
synchronizing if and only if there exists a non-null graph Γ on the
vertex set Ω for which S ≤ End(Γ). Moreover, we may assume that
ω(Γ) = χ(Γ).

Proof.
We saw that, if Γ has an edge, then S ≤ End(Γ) is
non-synchronizing.
Conversely, given a transformation monoid S, we define a
graph Gr(S) in which x and y are joined if and only if there is
no element s ∈ S with xs = ys. Show that S ≤ End(Gr(S)), that
Gr(S) has equal clique and chromatic number, and that S is
synchronizing if and only if Gr(S) is null.



Synchronizing groups

A permutation group is never synchronizing as a monoid, since
no collapses at all occur.
We abuse language by making the following definition. A
permutation group G on Ω is synchronizing if, for any map f
on Ω which is not a permutation, the monoid 〈G, f 〉 generated
by G and f is synchronizing.

Theorem
A permutation group G on Ω is non-synchronizing if and only if
there exists a G-invariant graph Γ, not complete or null, which has
clique number equal to chromatic number.
So G is synchronizing if and only if there is no non-trivial
G-invariant graph with clique number equal to chromatic
number.



Synchronization in the hierarchy

If G is intransitive, then it preserves a complete graph on one of
its orbits, which has clique number equal to chromatic number.
So G is not synchronizing. Thus a synchronizing group is
transitive.
A permutation group is imprimitive if it preserves a partition.
Such a group preserves a disjoint union of complete graphs on
the parts of the partition (which has clique number equal to
chromatic number). So a synchronizing group is primitive.
A 2-homogeneous group preserves no non-trivial graph at all.

Theorem
Let G be a permutation group of degree n > 2.
I If G is synchronizing, then it is primitive.
I If G is 2-homogeneous, then it is synchronizing.
I Neither of these implications reverses.



The O’Nan–Scott Theorem

Here is a simplified form of the famous O’Nan–Scott Theorem.

Theorem
A primitive group is non-basic, affine, diagonal or almost simple.
Almost simple groups (those which have a unique minimal
normal subgroup which is a non-abelian simple group) are the
most mysterious. In the other three cases, we understand the
maximal groups, not just as groups, but as permutation groups;
I will describe them as we come to them.



Non-basic groups

Non-basic groups are contained in wreath products Sq o Sn, in
their product action. The easiest way to specify the wreath
product is as the automorphism group of the Hamming graph
H(n, q), as used in coding theory.
The vertices of H(n, q) are all words of length n over an
alphabet A of cardinality q, where n, q > 1. Two vertices are
adjacent if they have Hamming distance 1. that is, they agree in
all coordinates except one. (In coding theory, we would say
that a single symbol error can transform one into the other.)
This graph has clique size q; the maximal cliques are the sets of
words with fixed entries in all coordinates except the ith (for
some i), and arbitrary entries in this coordinate.
Now assume that the alphabet A is an abelian group. Then the
map taking a vertex a1a2 . . . an to a1 + a2 + · · ·+ an is easily seen
to be a proper colouring with q colours.
So non-basic groups are non-synchronizing.



Affine and almost simple groups

Affine groups have abelian normal subgroups. They have the
form

{x 7→ xA + c : c ∈ V, A ∈ H},

where V is a finite vector space and H an irreducible linear
group on V. They may or may not be synchronizing.
Almost simple groups satisfy T ≤ G ≤ Aut(T), where T is a
non-abelian finite simple group. The action is not specified.
They may or may not be synchronizing.
Diagonal groups are considered below.



Latin squares

A Latin square of order n is an n× n array with entries taken
from an alphabet of size n, so that each letter in the alphabet
occurs once in each row and once in each column.

e a b c
a e c b
b c e a
c b a e

This is not just any old Latin square: it is the Cayley table, or
multiplication table, of the Klein group of order 4.



Latin square graphs

Given a Latin square L, we define a graph whose vertices are
the n2 cells of the square, two vertices adjacent if they lie in the
same row or the same column or contain the same symbol. This
is a Latin square graph.
If L is the Cayley table of a group T, the graph admits T3 (acting
on rows, columns and symbols), as well as automorphisms of T
and the symmetric group permuting the three types of object. If
T is simple, the group generated by all of these is primitive,
and is a three-factor diagonal group D(T, 3).
Latin square graphs are strongly regular, but almost all have
only the trivial group of automorphisms.



Transversals and orthogonal mates
A transversal is a set of cells, one in each row, one in each
column, and one containing each letter.

e a b c
a e c b
b c e a
c b a e

In this case we can partition the cells into transversals:

e a b c
a e c b
b c e a
c b a e

Regarding the colours as an alphabet we see a second Latin
square which is orthogonal to the first square, in the sense that
each combination of letter and colour occurs precisely once.



Not all Latin squares have transversals. Consider the following
square:

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Given a set of cells, one from each row and one from each
column, the sum of the row indices is 0 + 1 + 2 + 3 = 2
(mod 4). Similarly for the columns. Since each entry is the sum
of its row and column indices, the entries sum to 2 + 2 = 0
(mod 4). Thus the entries cannot be {0, 1, 2, 3}.
More generally, the Cayley table of a cyclic group of even order
has no transversal.



Complete mappings

Let G be a group. A complete mapping of G is a bijective map
φ : G→ G such that the map ψ defined by ψ(x) = xφ(x) is also
a bijection. The map ψ is an orthomorphism.
Given a transversal in the Cayley table of G, define φ and ψ by
the rule that φ(g) and ψ(g) are the column label and entry of
the transversal cell in row g. Then φ is a complete mapping,
and ψ the corresponding orthomorphism.
Also, if φ and ψ are a complete mapping and corresponding
orthomorphism, then the array with (g, h) entry gψ(h) is a Latin
square, which is an orthogonal mate for the Cayley table.
Thus the following are equivalent:
I the Cayley table of G has a transversal;
I the Cayley table of G has an orthogonal mate;
I G has a complete mapping.



The Hall–Paige conjecture

In 1955, Marshall Hall Jr and Lowell J. Paige made the
following conjecture:

Conjecture

A finite group G has a complete mapping if and only if the Sylow
2-subgroups of G are trivial or non-cyclic.
They proved the necessity of their condition, and its sufficiency
in a number of cases, including soluble groups and symmetric
and alternating groups.
Hall was a well known group theorist and combinatorialist.
Paige was much less well known: he was a student of Richard
Bruck, had 6 students at UCLA, and has 18 papers (including
his thesis on neofields) listed on MathSciNet.



Proof of the Hall–Paige conjecture

The Hall–Paige conjecture was proved in 2009 by Stuart
Wilcox, Anthony Evans, and John Bray.
Wilcox showed that its truth for all groups follows from its
truth for simple groups, and proved it for groups of Lie type,
except for the Tits group 2F4(2)′. (The first two types, cyclic and
alternating, are covered by Hall and Paige.)
Evans dealt with the Tits group and 25 of the 26 sporadic
groups.
Bray dealt with the final group, the Janko group J4.
The papers of Wilcox and Evans were published in the Journal
of Algebra in 2009. But Bray’s work has was not published at the
time. (It has now appeared, together with the following
discussion on synchronization, in the memorial issue of the
Journal of Algebra for Charles Sims.)



Latin square graphs

Let L be a Latin square of order n, and Γ its Latin square graph.
For n > 2, this graph has clique number n: any row, column or
letter is a clique.
Also, the chromatic number is n if and only if A has an
orthogonal mate:

e a b c
a e c b
b c e a
c b a e



3-factor diagonal groups

We saw that 3-factor diagonal group D(T, 3) with T simple is
the automorphism group of the Latin square graphs associated
with Cayley table of T.

Proposition

The group D(T, 3) is non-synchronizing.

Proof.
By Burnside’s Transfer Theorem, a non-abelian simple group
cannot have cyclic Sylow 2-subgroups. So by Hall–Paige, the
Latin square graph of its Cayley table has clique number equal
to chromatic number.



Partitions

To give our main theorem about the geometry of diagonal
structures, it is necessary to work with partitions.
The set of all partitions of a set Ω is partially ordered by
refinement: P ≤ Q if every part of P is contained in a part of Q.
With this ordering, partitions form a lattice:
I the meet P∧Q is the partition whose parts are all

non-empty intersections of a part of P and a part of Q;
I the join P∨Q is the partition into connected components

of the graph in which a, b ∈ Ω are joined if they lie in the
same part of P or of Q.



Cartesian lattices

Let Ω be the set of all words of length n over an alphabet A.
For I ⊆ {1, . . . , n}, let PI be the partition of Ω into parts, in each
of which the entries in coordinates in I take all possible values
while the entries in the other coordinates are fixed.
The minimal (non-trivial) partitions have |I| = 1; their parts are
the maximal cliques in the Hamming graph H(n, A).
The map I 7→ PI is an isomorphism from the Boolean lattice of
subsets of {1, . . . , n} to a sublattice of the partition lattice on Ω.
We will call such a sublattice a Cartesian lattice. Its least and
greatest elements are E and U.
In their book, Praeger and Schneider axiomatise Cartesian
structures in terms of their maximal partitions; they call this a
Cartesian decomposition of Ω.



Latin squares revisited

Latin squares can be interpreted in the following way. Let Ω be
the set of cells of the square array. Then we have three
partitions R, C, L of Ω corresponding to rows, columns, and
letters of the Latin square. These, together with the universal
partition U and the partition E into singletons, form a sublattice
of the partition lattice. Its Hasse diagram looks like this:
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Note the following important property: Any two of R, C, L
generate a lattice which is a Cartesian lattice on Ω with n = 2 (a
square grid).



Diagonal groups and their structures

I will briefly describe diagonal groups, leaving out details. Let
m be an integer greater than 1, and T a group. Let Ω = Tm, and
define m + 1 subgroups T0, . . . , Tm as follows:
I For 1 ≤ i ≤ m, Ti consists of m-tuples with the identity in

all coordinates except the ith;
I T0 is the diagonal subgroup consisting of elements with all

coordinates equal.
Let Qi be the partition into right cosets of Ti, for 0 ≤ i ≤ m. The
definition seems to give T0 a special role, but it can be shown
that the subgroups are all equivalent, and can be permuted
arbitrarily by symmetries of the structure.



Any m of the partitions defined above are the minimal
partitions in a Cartesian lattice. (This is clear for Q1, . . . , Qm; for
other choices it follows by symmetry.)
The diagonal structure is the union of these m + 1 Cartesian
lattices. It is not in general a lattice, but it is a join-semilattice,
that is, closed under taking joins. Indeed, it is generated as
join-semilattice by Q0, . . . , Qm.
We call it a diagonal semilattice, and denote it D(T, m).
I now come to the main theorem, a very recent result of
Rosemary Bailey, Cheryl Praeger, Csaba Schneider and me.



The main theorem

Theorem
Let m be an integer greater than 1. Let Ω be a set, and Q0, . . . , Qm
partitions of Ω.
Suppose that any m of the m + 1 partitions Q0, . . . , Qm are the
minimal non-trivial partitions in a Cartesian lattice.

I If m = 2, then the three partitions together with U and E form a
Latin square on Ω.

I If m > 2, then there is a group T such that Q0, . . . , Qm are the
minimal partitions in a diagonal semilattice D(T, m).

Note that the group T emerges naturally from simple
combinatorial assumptions! This is like the situation in
projective geometry, where planes are “wild” but
higher-dimensional spaces are coordinatised by skew fields.



A very brief sketch

For m = 2, we have a Latin square, as noted earlier; there is
nothing more to be said, since any Latin square gives an
example.
The main job is to prove the theorem for m = 3. Here we have
four Latin squares, and we have to show that they are all
isotopic to the Cayley table of the same group. The main tool is
an old theorem of Frolov (1890): Any two rows and two
columns of a Latin square define four entries. Suppose it
happens that if, for two such choices, three of the four letters
agree, then the fourth letter also agrees. Then the Latin square
is isotopic to the Cayley table of a group.
The remainder of the proof goes by induction. We build
smaller-dimensional quotients, show they satisfy the
hypotheses of the theorem, and patch them together to give the
result.



The diagonal graph

Given a diagonal structure D(T, m), we can define a graph
Γ(T, m) in which two vertices are adjacent if they lie in the
same part of one of the minimal partitions Qi.
For m = 2, this is the Latin square graph associated with the
Latin square.
For higher values of m, it can be shown (again using the truth
of Hall–Paige for m even) that it has clique number equal to
chromatic number, and hence that the corresponding diagonal
group is non-synchronizing.
These diagonal graphs may be of wider interest. In the case
|A| = 2, they are the folded cubes, and are distance-transitive.
They are surely worth further study . . .
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