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Lecture 1
Some of the players

Brauer and Fowler

In 1955, Brauer and Fowler published a paper which, in
retrospect, was the first step on the thousand-mile journey to
the Classification of Finite Simple Groups (CFSG).
I Richard Brauer and K. A. Fowler, On groups of even order,

Ann. Math. 62 (1955), 565–583.

The paper is best known for the following theorem (though
they do not state it explicitly as a theorem):

Theorem
Let H be a finite group. Then there are only finitely many finite
simple groups G containing an involution z such that CG(z) ∼= H.
This immediately suggests the problem of characterising finite
simple groups by the centraliser of an involution. This became
a major constituent of CFSG.

A graph?

The paper of Brauer and Fowler does not contain the word
“graph”. However, it does contain the following definition.
Let G# = G \ {1}. For g, h ∈ G#, the distance d(g, h) is the
smallest d for which there exist g0, g1, . . . , gd ∈ G# such that
g0 = g, gd = h, and gi−1gi = gigi−1 for i = 1, 2, . . . , d.
This is obviously the distance in the graph with vertex set G#,
in which two vertices are joined by an edge if they commute.
This was the first appearance of what is now known as the
reduced commuting graph of G.

Here is a simple example of their argument.

Proposition

Let x and y be non-conjugate involutions in a group G. Then
d(x, y) ≤ 2.

Proof.
The subgroup generated by x and y is a dihedral group D2n of
order 2n. Now n must be even, since if it were odd then x and y
would generate Sylow subgroups of 〈x, y〉, and so would be
conjugate, contrary to hypothesis. So D2n contains a central
involution z, which commutes with both x and y.
A simple enough argument, but it shows the blend of group
theory and graph theory you should expect in the remainder of
this course.

Where are we going?

We have seen the first tentative appearance of the commuting
graph of a finite group.
There are a number of further graphs that have been
considered; some of these already have a large literature. These
include the power graph, enhanced power graph, deep
commuting graph, generating graph, nilpotency graph,
solubility graph, and Engel graph.
My interest will be not so much in the individual graphs, as in
the relations between them. With a little twist, these graphs
form a hierarchy on a given group, with each one contained in
the next. This will focus our attention on two things: common
properties of the graphs, and how they relate; and properties of
further graphs which are formed by differences of the edge sets
of two graphs in the hierarchy.



Aims

I hope in this course to
I introduce you to an area of algebraic graph theory which I

find fascinating and addictive;
I mention a number of open problems;
I give you some tools to tackle them.

For more details, see my paper “Graphs defined on groups”, to
appear in the International Journal of Group Theory: the doi is

10.22108/ijgt.2021.127679.1681

or (better) get it from

https://ijgt.ui.ac.ir/article 25608.html

or you can find a version on the arXiv, 2102.11177.

Thanks . . .

I to Ambat Vijayakumar, who invited me to present some of
this material in a couple of seminars in a new series he set
up in Kochi in Kerala, India;

I to Alireza Abdollahi, who saw the preprint and
encouraged me to publish it in the Journal he edits;

I to Scott Harper, who drew the beatiful picture of the
generating graph of A5, for permission to use it on the
poster and title pages;

I to many coauthors, several of whom will be mentioned in
what follows, for collaborations;

I and, of course, to the London Taught Course Centre for the
opportunity to preach about them here.

Where we are not going

I will not be talking, except in passing, about Cayley graphs.
These are graphs defined on groups, and have a huge theory;
much of algebraic graph theory, and arguably most of
geometric group theory, concerns Cayley graphs (of finite and
infinite groups respectively).
To recall: if S is an inverse-closed subset of G \ {1}, the Cayley
graph Cay(G, S) has vertex set G, with an edge from x to y if
xy−1 ∈ S. (It is slightly different if you like left actions.)
A Cayley graph is a graph whose vertex set is a group G and
which is invariant under right translations by elements of G. It
is not invariant under automorphisms of G except in very
special cases. By contrast, the graphs I am discussing are
invariant under automorphisms of G, because they are
uniquely specified by G, without requiring choosing a
generating set.

Notation

A talk about groups typically begins “Let G be a group . . . ”,
while a talk about graphs will start “Let G be a graph . . . ”. We
will be talking about both, so we have to make a decision.
I “Graph” is a Greek word, so it makes sense for a graph to

be Γ.
I “Group” is a German word, so perhaps a group should be

G; but I never learned how to do a Gothic G in
handwriting, and probably you didn’t either, so I will use
G for a group.

Otherwise, notation for groups and graphs will be standard. I
will try to explain as I go along, but please ask if you need
clarification!

Dramatis Personae, 1: the commuting graph

The commuting graph Com(G) of G has vertex set G; vertices g
and h are joined if and only if gh = hg. (This definition would
put a loop at every vertex; we silently suppress these.)
Here are the commuting graphs of the two non-abelian groups
of order 8: D8 = 〈a, b : a4 = 1, b2 = 1, b−1ab = a−1〉 and
Q8 = 〈a, b : a4 = 1, b2 = a2, b−1ab = a−1〉.
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The reduced commuting graph

There are two conventions we need to consider.
I The formal definition would require each vertex to be

joined to itself; that is, the graph has a loop at every vertex.
We will see soon that there is sometimes a good reason for
this. But usually we will silently remove the loops.

I You will recall that Brauer and Fowler removed the
identity from the graph; the identity commutes with
everything and so is joined to all vertices, thus questions
like connectedness (which was important for them) would
become trivial. My default is that all graphs are defined on
the whole group; when we come to consider
connectedness, we first determine which vertices are
joined to all others, and then remove them.

We will denote the commuting graph of G (defined on all of G,
but without loops) by Com(G).



The “Burnside process”

Another application of the commuting graph comes from a
completely different area.

Theorem (Orbit-counting Lemma)

Let G be a permutation group on a finite set Ω. Then the number of
orbits of G on Ω is equal to the average number of fixed points of
elements of G.
The proof involves constructing a bipartite graph whose vertex
set is G∪Ω, with an edge from g ∈ G to x ∈ Ω if g fixes x. Now
counting the number of edges in the graph in two different
ways gives the result.

Mark Jerrum showed that more is true. Consider the uniform
random walk on the graph just constructed: at each time step
we move from a vertex to a neighbouring vertex chosen
uniformly at random.
A small adaptation of the proof of the Orbit-counting Lemma
shows that, if we start at a vertex in Ω and take an even
number of steps (so that we are back in Ω), the limiting
distribution is uniform on orbits – that is, the probability of
being at a point x ∈ Ω is inversely proportional to the size of
the orbit containing x.
Jerrum called this random walk the Burnside process, since the
Orbit-counting Lemma was referred to (incorrectly) by early
combinatorial enumerators as “Burnside’s Lemma” (it appears
without attribution in the second edition of Burnside’s book).
Peter Neumann traced it back to Cauchy and Frobenius.

Conjugacy classes

A group G acts on itself by conjugation. In this case Ω = G, so
we can identify these two sets. Now the group element g fixes x
if and only if gx = xg. So, for this action, the Burnside process is
just a random walk on the commuting graph of G (including
the identity, and with a loop at each vertex).
The importance of this is that some very large groups have
very small conjugacy classes. For an extreme example, the
symmetric group Sn has order n!, but the transpositions form a
conjugacy class of size just n(n− 1)/2. If we are trying to find
all conjugacy classes in a large group, the random walk
“magnifies” such small classes and makes them more visible.
Persi Diaconis has used similar ideas to show that the problem
of describing conjugacy classes in high-dimensional analogues
of Heisenberg groups over finite fields is likely to be hard, since
their commuting graphs are arbitrarily complicated.

Dramatis Personae, 2: The power graph and its relatives

The power graph of a group G was first defined by Kelarev and
Quinn as a directed graph, with an arc x→ y from x to y
whenever y is a power of x. We denote this directed graph by
DPow(G).
Chakrabarty, Ghosh and Sen introduced the undirected version
Pow(G), in which x and y are joined if x→ y or y→ x (or both)
in the directed power graph.
Although pre-empted by Abdollahi, Aalipour et al. introduced
the enhanced power graph EPow(G), in which x and y are
joined if there exists an element z such that z→ x and z→ y in
the directed power graph.
Note that the edge set of the power graph is contained in that
of the enhanced power graph (hence the name).

An example: C6
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The pictures show the directed power graph, the power graph,
and the enhanced power graph of the cyclic group C6.
In the directed power graph, if two elements generate the same
cyclic group, then there are arcs in both directions: we
represent this by an undirected edge. To get the power graph,
we simply ignore the remaining edges.
Note that, in Pow(C6), we cannot distinguish between the
identity and the two generators; each is joined to all other
vertices.

Relations

Theorem
For two groups G and H, the following are equivalent:
1. DPow(G) ∼= DPow(H);
2. Pow(G) ∼= Pow(H);
3. EPow(G) ∼= EPow(H).

The implications 1⇒ 2 and 1⇒ 3 come from the definitions.
2⇒ 1 was proved by Cameron, and 3⇒ 1 by Zahirović.
The implication 2⇒ 1 does not imply that the directed power
graph can be recovered uniquely from the power graph. As we
have seen, in the power graph of C6, the identity and the two
generators are indistinguishable, whereas one is a sink and the
other two sources in the directed power graph. In EPow(C6),
all vertices are indistinguishable.



Also, the three equivalent implications do not imply that
G ∼= H: any two groups of exponent 3 with the same order have
isomorphic power graphs (consisting of a number of triangles
with a common vertex).
However, this does hold in a special case. We cannot
distinguish abelian groups of the same order by their
commuting graphs, but we can by their power graphs:

Theorem
If G and H are abelian groups with Pow(G) ∼= Pow(H), then
G ∼= H.

Proof.
Cameron and Ghosh showed that, from the power graph of G,
we can reconstruct the numbers of elements of each possible
order in G. For abelian groups, this data determines the group
up to isomorphism.

Another view

Proposition

In the group G,
I x and y are joined in the commuting graph if and only if 〈x, y〉 is

abelian.
I x and y are joined in the enhanced power graph if and only if
〈x, y〉 is cyclic.

This suggests an obvious generalisation: choose your favourite
family of groups, and join x to y if and only if 〈x, y〉 belongs to
that family.
In particular, x and y are joined in the nilpotency graph of G if
〈x, y〉 is nilpotent; and are joined in the solubility graph of G if
〈x, y〉 is soluble.
More on these later.

The generating graph

Instead, we follow a different take on this idea. The generating
graph Gen(G) of G has vertex set G, with vertices x, y joined if
〈x, y〉 = G. Clearly it is a null graph if G cannot be generated by
two elements; but we know from CFSG that all finite simple
groups can be generated by two elements, so there are
interesting examples to consider.
The generating graph for many interesting groups is fairly
dense, as the following result of Burness, Guralnick and Harper
shows. We say that a graph has spread k if any k vertices have a
common neighbour. Thus, “spread 1” means “no isolated
vertices, while “spread 2” means that any two vertices are
joined by a path of length 2 (so the diameter is at most 2).

The reduced generating graph is the generating graph with the
identity removed.

Theorem
For a finite group G, the following are equivalent:
I Gen(G) has spread 1;
I Gen(G) has spread 2;
I every proper quotient of G is cyclic.

So for example every non-abelian finite simple group satisfies
these conditions.
For reasons which will become clear, I will talk about the
non-generating graph NGen(G), the complement of the
generating graph. This also turns out to be connected with
small diameter for non-abelian simple G (if the identity is
removed).

The deep commuting graph

This graph is a bit different from the others, requiring more
serious group theory for its definition (by Cameron and
Kuzma).
Let G be a finite group. A central extension of G is a group H
with a normal subgroup Z contained in the centre of H such
that H/Z ∼= G. We regard the epimorphism from H to G as part
of the structure of the extension, and call Z the kernel. So we
can talk about the inverse images of an element of G in H.
Now the deep commuting graph DCom(G) of G is the graph
with vertex set G, in which x and y are joined if and only if their
inverse images in every central extension of G commute.
So it is not obvious that the definition makes sense. But we will
see that it is enough to consider one central extension.

Schur covers and Schur multiplier

A central extension H of G with kernel Z is a stem extension of
G if Z ≤ Z(H) ∩H′, where H′ is the derived group or
commutator subgroup of H.
Schur showed the following:

Theorem
Let G be a finite group. Then there is a stem extension H of G which
is of maximal order. Moreover, in any two stem extensions of
maximal order, the kernels are isomorphic.
The stem extensions of maximal order are called Schur covers
of G, and the kernel is the Schur multiplier of G.



The Schur multiplier

The Schur multiplier occurs in many other disguises. For
example:
I It is the second homology group of G over the integers,

H2(G, Z).
I It is the second cohomology from group of G over the

multiplicative group of complex numbers, H2(G, C×).
I If we have a presentation of G as F/R, where F is a free

group, then the Schur multiplier is (R∩ F′)/[R, F].

The deep commuting graph

Theorem
Let H be a Schur cover of G. Then two elements of G have the
property that their inverse images in every central extension of G
commute if and only if their inverse images in H commute.
Thus the deep commuting graph of G is well-defined; it is
obtained by taking the commuting graph of a Schur cover of G
and projecting it onto G.
As a corollary we see that any two Schur covers of G have
isomorphic commuting graphs. This can be proved directly
using the notion of isoclinism.

An example

The Klein group V4 = C2 × C2 has two Schur covers, the
dihedral and quaternion groups of order 8 (so that its Schur
multiplier is C2). Here is the commuting graph of these groups
again:
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We see that the deep commuting graph of V4 is the star K1,3,
even though its commuting graph is the complete graph K4.

Invariance under automorphisms

For most of the graph types we have defined (the power graph,
enhanced power graph, commuting graph, and generating
graph), it is clear that any automorphism of the group G
induced an automorphism of the corresponding graph on G.
This is not immediately clear for the deep commuting graph,
but it is true in this case. Once we know that our original
definition (two vertices joined if their inverse images in every
central extension commute) is a good definition, it is clear that
the graph is preserved by automorphisms.



Lecture 2
The hierarchy

The hierarchy of graphs

The joining rules for elements x and y of a group G:
I null graph: never
I power graph Pow(G): one is a power of the other
I enhanced power graph EPow(G): both are powers of an

element z; equivalently 〈x, y〉 is cyclic
I deep commuting graph DCom(G): the inverse images of x

and y commute in every central extension of G
I commuting graph Com(G): xy = yx; equivalently 〈x, y〉 is

abelian
I non-generating graph NGen(G): 〈x, y〉 6= G
I complete graph: always

I will call this the graph hierarchy of G.

Inclusions

Proposition

With the possible exception of Com(G) and NGen(G), the edge set
of each graph in the hierarchy is contained in that of the next. This
holds for Com(G) and NGen(G) if and only if G is either
non-abelian or not 2-generated.

Proof.
Everything is clear except perhaps the position of the deep
commuting graph. It is clear that edges of the deep commuting
graph are edges of the commuting graph, since G is a central
extension of itself.
Suppose that x and y are joined in the enhanced power graph,
so that 〈x, y〉 = 〈z〉 for some z. Let H be a central extension of G,
with H/Z ∼= G, and let a, b, c be inverse images of x, y, z in H.
Then 〈Z, a, b〉 = 〈Z, c〉 is abelian, since Z is central; so a and b
commute.

When does equality hold?

A natural question that arises is: for which groups G is a
consecutive pair of graphs in the hierarchy on G equal?
At the top and bottom, this is easy:
I Pow(G) is null if and only if G = {1}. For every non-trivial

element is joined to 1 in the power graph.
I NGen(G) is complete if and only if G is not 2-generated.
I Com(G) = NGen(G) if and only if G is a minimal

non-abelian group.
The minimal non-abelian groups were determined by Miller
and Moreno in 1904. (I give their result on the next slide.) They
are all 2-generated. So, if G is not minimal non-abelian, then it
contains two non-commuting elements which generate a
proper subgroup.
For the other gaps, I ignore the deep commuting graph at first,
and come back to it later.

Minimal non-abelian groups

Let G be a minimal non-abelian group. There are two
possibilities:
I |G| is a power of a prime p, and G = 〈a, b〉, where

Z(G) = 〈ap, bp, [a, b]〉, and G′ = 〈[a, b]〉 has order p.
Moreover, either p = 2 and G is the quaternion group of
order 8, or 〈ap〉 ∩ 〈bp〉 = {1}.

I |G| is divisible by two primes p and q; moreover, G is a
semidirect product of an elementary abelian p-group N by
a cyclic q-group 〈b〉, where b induces an automorphism of
order q which is irreducible on N.

As noted, it is important for us that minimal non-abelian
groups are 2-generated.

Frobenius and 2-Frobenius groups

The group G is a Frobenius group if it has a proper subgroup H
(called a Frobenius complement) with the property that
H ∩Hg = {1} for all g ∈ G \H. The symmetric group S3 is an
example.
Frobenius showed that, if N is the set of elements lying in no
conjugate of H, together with the identity, then N is a normal
subgroup of G, called the Frobenius kernel. Moreover,
Thompson showed that the Frobenius kernel is nilpotent, and
Zassenhaus determined the structures of Frobenius
complements.
The group G is a 2-Frobenius group if it has a chain of normal
subgroups {1}C N C M C G such that
I M is a Frobenius group with Frobenius kernel N;
I G/N is a Frobenius group with Frobenius kernel M/N.

The symmetric group S4 is an example.



Power graph and enhanced power graph

Proposition

Let G be a finite group. Then the following are equivalent:
I Pow(G) = EPow(G);
I G contains no subgroup Cp × Cq for distinct primes p, q;
I every element of G has prime power order.

Proof.
Commuting elements of distinct prime orders p and q are
joined in the enhanced power graph but not in the power
graph. Conversely, if x and y are joined in the enhanced power
graph but not in the power graph, then 〈x, y〉 is cyclic but not of
prime power order, so it contains an element of order pq for
distinct primes p, q.
Groups with the last property are called EPPO groups.

Classification of EPPO groups

If G is an EPPO group, then the centraliser of an involution in G
must be a 2-group. Back in the last century, groups with this
property were studied under the name CIT groups by Suzuki,
who classified the simple CIT groups:
I PSL(2, q) for q a power of 2;
I the Suzuki group Sz(q), for q an odd power of 2;
I PSL(2, q), where q is a Fermat or Mersenne prime or q = 9;
I PSL(3, 4).

The non-simple case took longer; following the work of a
number of mathematicians, Natalia Maslova and I completed
the classification of EPPO groups in a paper now on the arXiv.
This is given on the next slide, where π(G) denotes the set of
prime divisors of |G|.

Theorem
An EPPO group G satisfies one of the following:

I |π(G)| = 1 and G is a p-group.

I |π(G)| = 2 and G is a solvable Frobenius or 2-Frobenius group.

I |π(G)| = 3 and G ∈ {A6, PSL2(7), PSL2(17), M10}.
I |π(G)| = 3, G/O2(G) is PSL2(2n) for n ∈ {2, 3} and if

O2(G) 6= {1}, then O2(G) is the direct product of minimal normal
subgroups of G, each of which is of order 22n and as a
G/O2(G)-module is isomorphic to the natural GF(2n)SL(2n)-module.

I |π(G)| = 4 and G ∼= PSL3(4).

I |π(G)| = 4, G/O2(G) is Sz(2n) for n ∈ {3, 5}, and if O2(G) 6= {1},
then O2(G) is the direct product of minimal normal subgroups of G,
each of which is of order 24n and as a G/O2(G)-module is isomorphic
to the natural GF(2n) Sz(2n)-module of dimension 4.

The Gruenberg–Kegel graph appears

The Gruenberg–Kegel graph of a finite group G is the graph
whose vertex set is π(G), with an edge from p to q if and only if
G contains an element of order pq.
I will have a lot more to say about this graph later in the course,
but for now let us just note the following:

Proposition

The finite group G is an EPPO group if and only if its
Gruenberg–Kegel graph has no edges.
An important ingredient of the classification of EPPO groups is
the unpublished theorem of Gruenberg and Kegel, a structure
theorem about groups whose Gruenberg–Kegel graph is not
connected. More on this later.

Enhanced power graph and commuting graph

Proposition

Let G be a finite group. Then the following are equivalent:
I EPow(G) = Com(G);
I G contains no subgroup Cp × Cp for prime p;
I the Sylow subgroups of G are cyclic or generalised quaternion

groups.

Proof.
The equivalence of the first two conditions is clear since a
non-cyclic abelian group contains a subgroup Cp × Cp.
The equivalence of the second and third follows from a
theorem of Burnside asserting that groups of p-power order
containing no Cp × Cp subgroup must be cyclic or generalised
quaternion.

Classification

It is possible to determine completely the groups with cyclic or
generalised quaternion Sylow subgroups.
If all Sylow subgroups are cyclic, then G is metacyclic. For let
F(G) be the Fitting subgroup of G, the largest normal nilpotent
subgroup of G. Then F(G) is a direct product of cyclic groups of
coprime orders, so is cyclic. Since it contains its centraliser,
G/F(G) embeds into Aut(F(G), which is abelian with cyclic
Sylow subgroups and so is cyclic.
If p and q are primes such that q | p− 1, the non-abelian group
of order pq (the semidirect product of Cp by Cq) is an example.



Now suppose that the Sylow 2-subgroups of G are generalised
quaternion and the odd Sylow subgroups cyclic.
Let O(G) be the largest normal subgroup of G of odd order.
Then by the previous analysis, O(G) is metacyclic. Put
Ḡ = G/O(G).
By Glauberman’s Z∗-theorem, Ḡ has a unique central subgroup
of order 2, generated by z say. Then Ḡ/〈z〉 has dihedral Sylow
2-subgroups, and so is determined by the Gorenstein–Walter
theorem; it must be PSL(2, p) or PGL(2, p), for an odd prime p.
There is a unique group Ḡ for each choice of Ḡ/〈z〉. Indeed, a
cohomological argument due to Glauberman shows that any
group with dihedral Sylow 2-subgroups has a unique extension
containing only one involution (and so having generalised
quaternion Sylow 2-subgroups).

The deep commuting graph

We deferred discussion of this graph, which lies between the
enhanced power graph and the commuting graph in the
hierarchy. For which groups is it equal to one or other of these?

Theorem
Let G be a finite group. Then DCom(G) = EPow(G) if and only if
G has the following property: let H be a Schur cover of G, with
H/Z = G. Then for any subgroup A of G, with B the corresponding
subgroup of H (so Z 6 B and B/Z = A), if B is abelian, then A is
cyclic.

Proof.
Just a matter of checking the definitions: 〈x, y〉 is cyclic if x and
y are joined in EPow(G), and their inverse images in a Schur
cover generate an abelian group if and only if x and y are joined
in DCom(G).

An example

Suppose that G is a group and p a prime such that G has a
subgroup H ∼= Cp × Cp, and p does not divide the order of the
Schur multiplier M(G). Then the lift of H to a Schur cover splits
over the Schur multiplier, and hence is abelian; but H is not
cyclic. So DCom(G) 6= EPow(G).
For example, the Schur multiplier of the alternating group An
for n ≥ 8 is cyclic of order 2, and this group contains C3 × C3.

The Bogomolov multiplier

For the other equality, we need another piece of technology.
Recall that
I a stem extension of G is a group H with a subgroup

Z ≤ Z(H) ∩H′ such that H/Z ∼= G;
I a Schur cover is a largest stem extension, and the Schur

multiplier of G is the subgroup Z (it is determined
uniquely by G, although H may not be).

The Schur multiplier of G is denoted by M(G).
Let H be a stem extension of G, and let a, b be the inverse
images in H of x, y ∈ G. Clearly, if a and b commute, then so do
x and y. If the converse is true, then we say that the extension is
commutativity-preserving, or CP for short.

Theorem
Given a finite group G, there is a unique finite abelian group Z such
that any CP stem extension of G of largest possible order has kernel Z.
The subgroup Z is called the Bogomolov multiplier of G,
denoted by B0(G).
It has various descriptions. For example, one can define a
nonabelian exterior square G∧G, generated by symbols x∧ y
for x, y ∈ G subject to the relations

(xy)∧ z = (xy∧ zy)(y∧ z), x∧ (yz) = (x∧ z)(xz∧ yz), x∧ x = 1.

Then x∧ y 7→ [x, y] is a surjective homomorphism from G∧G
to G′ whose kernel is M(G). If we set
M0(G) = 〈x∧ y | [x, y] = 1〉; then B0(G) ∼= M(G)/M0(G).

The Bogomolov multiplier arose in connection with the work of
Artin and Mumford on obstructions to Noether’s conjecture on
the pure transcendence of the field of invariants. Fortunately
we do not need this background.
More practially, the GAP package HAP, written by Graham Ellis,
will compute the Bogomolov multiplier, as well as the Schur
multiplier, of a group.

Theorem
Let G be a finite group. Then DCom(G) = Com(G) if and only if
B0(G) = M(G).



Simple groups

Kunyavskiı̆ proved a conjecture of Bogomolov by showing that
the Bogomolov multiplier of every finite non-abelian simple
group is trivial.
The alternating group An for n ≥ 8 has Schur multiplier of
order 2. So for these groups, the enhanced power graph, deep
commuting graph, and commuting graph are all unequal.
However, the Schur multiplier of M11 is trivial; so the
commuting graph and deep commuting graph of this group are
equal.

Further examples

It is possible for the Schur and Bogomolov multipliers to be
equal when they are both non-trivial. An example is a certain
group of order 64 (this is SmallGroup(64,182) in the GAP
library).
Dihedral groups of order 2n ≥ 8 have the property that their
deep commuting graphs are equal to their enhanced power
graphs, but not equal to their commuting graphs.
It has to be admitted that the situation is not perfectly
understood . . .

Differences

Now that we have some kind of description of groups for
which two graphs in the hierarchy coincide, a natural question
is: if G is a group for which two of these graphs are unequal,
what can be said about the graph whose edge set is the
difference of the edge sets of the two graphs?
Not very much is known. There are a couple of trivial
observations:
I The difference between Pow(G) and the null graph is just

Pow(G), which has an extensive literature.
I The difference between the complete graph and the

non-generating graph is, of course, the generating graph
Gen(G), which also has an extensive literature.

But there are many more differences that could be explored.
Some of these will arise later in this course.

The non-commuting, non-generating graph

One of these difference graphs which has been studied in some
detail is the difference between the non-generating graph and
the commuting graph (which, we recall, is non-null if and only
if G is not a minimal non-abelian group).
This is considered by Saul Freedman in his PhD thesis,
currently nearing completion. He concentrates mainly on
questions of connectedness and of diameter of connected
components.
Since this material is not yet available, I will not discuss it here.

An observation

The power graph, enhanced power graph, deep commuting
graph, and commuting graph have the following property:

Let X be one of the above graph types, and G a finite
group. If H is a subgroup of G, then the induced sub-
graph of X(G) on H is X(H).

But the non-generating graph behaves very differently:
Let G be a finite group. If H is a proper subgraph of
G, then the induced subgraph of NGen(G) on H is a
complete graph.

For no two elements of H can generate G.



Lecture 3
Cographs and twin

reduction

Graph theory definitions

I have used some of these ideas informally already: here are
definitions.
Our graphs are always simple (without loops and multiple
edges).
A walk from v to w is a sequence (v0, v1, . . . , vr) of vertices such
that v0 = v, vr = w, and vi−1 is joined to vi for i = 1, . . . , r. It is a
path if the sequence has no repeated vertices. (If there is a walk
from v to w then there is a path.) A graph is connected if there
is a path between any two of its vertices. In a connected graph,
the distance from v to w is the length (one less than the number
of vertices) of the smallest path joining them, and the diameter
of the graph is the maximum distance between two vertices.
The complement of a graph Γ is the graph Γc with the same
vertex set whose edges are those pairs of vertices which are not
edges in Γ.

Subgraphs

Let Γ be a graph. We denote its vertex set by V(Γ) and its edge
set by E(Γ).
A subgraph of Γ has as vertex and edge sets subsets of those of
Γ, with the proviso that if an edge belongs to the subgraph then
so do both of its vertices.
Two kinds of subgraphs are particularly important:
I For an induced subgraph, we take a subset W of V(Γ) as

vertex set, and all edges of Γ with both vertices in W as the
edge set.

I For a spanning subgraph, the vertex set is all of V(Γ), and
the edge set is a subset of E(Γ).

Note that, in our graph hierarchy on a group G, each graph is a
spanning subgraph of the next.

Cographs

Cographs form a class of graphs with many nice properties.
They have an inductive structure which allows many hard
algorithmic problems to be solved very easily on cographs.
To motivate the definition, note that the complement of a
disconnected graph is connected. For if Γ is disconnected, then
the vertex set can be split into two non-empty parts A and B
with no edges between them. Now in Γc, every vertex of A is
joined to every vertex of B; so any two vertices in A have a
common neighbour in B, and vice versa.
The converse is false, as the graph P4 (the four-vertex path)
shows:
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Cographs

The next theorem describes graphs for which the converse of
the above holds “inductively”.

Theorem
For a finite graph Γ, the following conditions are equivalent:
1. Γ has no induced subgraph isomorphic to P4;
2. for every induced subgraph ∆ of Γ with more than one vertex,

either ∆ or its complement ∆c is disconnected;
3. Γ can be built from the trivial graph by the operations “disjoint

union” and “complement”.

A graph satisfying these three conditions is called a cograph.

Proof
1⇒ 2: Suppose that Γ has no induced P4 but both Γ and its
complement are connected, and let Γ be minimal with this
property. Then, given any vertex v, if we remove v (that is, take
the induced subgraph on V(Γ) \ {v}), either the graph or its
complement is disconnected, without loss the former.
I claim that v is joined to all other vertices of Γ. For we can
partition V(Γ) into two parts A and B so that every path
between them passes through Γ. If some vertex u of A were not
joined to v, we could take a path of length at least 2 from u to v
and an edge from v to a vertex of B, giving an induced path of
length 3, contrary to assumption. Similarly for B.
But now v is an isolated vertex in Γc, which is therefore
disconnected.



2⇒ 3: By repeatedly splitting into connected components and
taking the complement, a graph satisfying 2 is reduced to
1-vertex graphs. Reversing the splitting procedure gives the
required construction.

3⇒ 1: It is clear that P4 cannot be built in this way: if a graph
contains P4, then so does its complement; and if a graph
contains P4, then at least one of its connected components
does.

We see that cographs form the smallest class of graphs
containing the 1-vertex graph and closed under complement
and disjoint union.

Cographs have been rediscovered a number of times, and have
received several different names in the literature, such as
“complement-reducible graphs”, “hereditary Dacey graphs”,
and “N-free graphs”.
Here is some data. Almost all groups of order up to n are
2-groups. The table gives the number of groups, and the
number for whom a graph in the hierarchy is a cograph.

Order Groups Pow EPow Com NGen
1 1 1 1 1 1
2 1 1 1 1 1
4 2 2 2 2 2
8 5 5 5 5 5

16 14 14 14 14 14
32 51 51 51 44 51
64 267 267 267 152 267
128 2328 2328 2328 789 2328

And here are some results for small non-abelian simple groups:

G |G| Pow EPow DCom Com NGen
A5 60 Y Y Y Y N

PSL(2, 7) 168 Y Y Y N N
A6 360 Y Y Y N N

PSL(2, 8) 504 Y Y Y Y N
PSL(2, 11) 660 Y Y Y N N
PSL(2, 13) 1092 Y Y Y N N
PSL(2, 17) 2448 Y Y Y N N

A7 2520 N N N N N
PSL(2, 19) 3420 Y Y Y N N
PSL(2, 16) 4080 Y Y Y Y N
PSL(3, 3) 5616 N N N N N
PSU(3, 3) 6048 N N N N N
PSL(2, 23) 6072 N Y Y N N
PSL(2, 25) 7800 N Y Y N N

M11 7920 N N N N N

Some explanations

We have seen that, for groups of prime power order, the power
graph and enhanced power graph are equal; we will see later
that the power graph is a cograph.

Theorem
I If G has prime power order, then NGen(G) is a cograph.
I If G is a non-abelian finite simple group, then NGen(G) is not a

cograph.

Proof.
For the first, if G is not 2-generated, then NGen(G) is complete;
if it is 2-generated, then by the Burnside Basis Theorem, any
subgroup of index p induces a complete graph, and any two of
these complete graphs intersect in the Frattini subgroup Φ(G)
(with index p2); all other pairs generate.
For the second, we will see later that the generating graph of a
finite simple group and its complement are both connected.

The power graph of a p-group is a cograph

Cameron, Manna and Mehatari showed something a bit
stronger: the power graph of a p-group has no induced P4 or
C4.
Suppose first that (x, y, z) is an induced P3. In DPow(G), we
cannot have x→ y→ z or z→ y→ x, since either would imply
x ∼ z in Pow(G). Also we cannot have y→ x and y→ z, since
then x, z ∈ 〈y〉, but the power graph of a cyclic p-group is a
complete graph. So we must have x→ y and z→ y.
Now suppose that (x, y, z, w) is a path of length 4, with x 6∼ z
and y 6∼ w. Then we have x→ y and z→ y, and also y→ z and
w→ z; but these imply x→ z, a contradiction. So both induced
P4 and induced C4 are excluded.

The power graph of a nilpotent group

In the same paper, the following theorem is proved:

Theorem
Let G be a nilpotent group whose power graph is a cograph. Then
either G is a p-group for some prime p, or G is cyclic of order pq,
where p and q are distinct primes.
This theorem is more useful than it appears, since it restricts the
possible nilpotent subgroups of an arbitrary group whose
power graph is a cograph.
We will examine the groups PSL(2, q) on the next slide. Here q
is a prime power. If q is a power of 2, let {l, m} = {q− 1, q + 1};
if q is odd, let {l, m} = {(q− 1)/2, (q + 1)/2}. Note that
PSL(2, q) has maximal cyclic subgroups of orders l and m.



Proposition

With the notation just introduced, Pow(PSL(2, q)) is a cograph if
and only if each of l and m is either a prime power or the product of
two distinct primes.
Deciding which prime powers have this property is a
number-theoretic property, and probably rather a hard one.
The numbers d ≤ 200 for which q = 2d has the above property
are 1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 31, 61, 101, 127, 167, 199.
For example, 211 − 1 = 23 · 89, while 211 + 1 = 3 · 683.
The odd prime powers up to 500 with the property are 3, 5, 7, 9,
11, 13, 17, 19, 27, 29, 31, 43, 53, 67, 163, 173, 243, 257, 283, 317.

Question
Are there infinitely many prime powers q for which the power graph
of PSL(2, q) is a cograph?

Twins

Two vertices v and w in a graph Γ are called twins if they have
the same neighbourhood (except possibly for one another).
If we denote by N(v) the set of vertices joined to v, and
N̄(v) = {v} ∪N(v), then we call v and w open twins if
N(v) = N(w), and closed twins if N̄(v) = N̄(w).
A vertex cannot have both a closed and an open twin. For
suppose that u and v are closed twins, and v and w are open
twins. Then u and w are not joined (since u’s twin v is not
joined to w) and also joined (since w’s twin v is joined to u), a
contradiction.
Thus, being twins in a graph is an equivalence relation.
Note that interchanging twins (while fixing all other vertices) is
a graph automorphism; so the automorphism group of the
graph contains a normal subgroup which is the direct product
of symmetric groups on the twin classes.

Twins in the hierarchy

Proposition

If X denotes any graph type in the hierarchy, and G is any non-trivial
finite group, then the twin relation on X(G) is non-trivial.

Proof.
It is easily checked that two vertices which generate the same
cyclic subgroup are closed twins in each of the graphs save
possibly the non-generating graph (if G is cyclic). So (excluding
this case) we are done unless G has exponent 2. In this case,
X(G) is a star (if X is the power graph, enhanced power graph,
or deep commuting graph) or a complete graph (in the other
two cases).
Cyclic groups are easily dealt with.

Twin reduction

If two vertices are twins, then we may identify them. This
process is known as twin reduction, and it can be iterated.
Some interesting properties of a graph are preserved by twin
reduction. For example, if F is a graph with trivial twin
relation, then twin reduction preserves the property “no
induced subgraph isomorphic to F”.

Theorem
Given a finite graph Γ, apply twin reduction until no pairs of twins
remain. The result is (up to isomorphism) independent of the way the
twin reduction is carried out.
The resulting graph is called the cokernel of Γ.

Proof.
The proof is by induction on the number of steps.
If the first step in two sequences of twin reduction involve the
same or intersecting pairs of twins, then after one step the
graphs are isomorphic, and induction gives the result.
If the first step involves disjoint pairs, then consider the graph
∆ obtained by applying both of these identifications to Γ. (Note
that the two identifications commute.) By induction each of the
original sequences gives the same result as a sequence starting
with ∆.

Cographs and twin reduction

Theorem
A finite graph is a cograph if and only if its cokernel is the 1-vertex
graph.

Proof.
As we noted, twin reduction cannot create or destroy an
induced P4, so it preserves the property of being a cograph. So
we need to show that any cograph with more than one vertex
contains a pair of twins.
If Γ is null, this is clear. If Γ is disconnected but not null, then
by induction there is a pair of twins in a non-trivial connected
component. If Γ is connected, then its complement is
disconnected, and so contains a pair of twins; but the property
of being twins is preserved by complementation.



Finite simple groups

Here is the earlier table with the numbers of vertices in the
cokernel.

G |G| Pow EPow DCom Com NGen
A5 60 1 1 1 1 32

PSL(2, 7) 168 1 1 1 44 79
A6 360 1 1 1 92 167

PSL(2, 8) 504 1 1 1 1 128
PSL(2, 11) 660 1 1 1 112 244
PSL(2, 13) 1092 1 1 1 184 366
PSL(2, 17) 2448 1 1 1 308 750

A7 2520 352 352 352 352 842
PSL(2, 19) 3420 1 1 1 344 914
PSL(2, 16) 4080 1 1 1 1 784
PSL(3, 3) 5616 756 756 808 808 1562
PSU(3, 3) 6048 786 534 499 499 1346
PSL(2, 23) 6072 1267 1 1 508 1313
PSL(2, 25) 7800 1627 1 1 652 1757

M11 7920 1212 1212 1212 1212 2444

A last note on cographs

We have seen hints that cographs and twin reduction are
relevant to the study of automorphism groups of the graphs in
the hierarchy. So we will revisit this material in the context of
automorphism groups later.

Question
Given a graph type X in the hierarchy, for which finite groups G is
X(G) a cograph?

Theorem
The power graph of G is a cograph if and only if there do not exist
g, h ∈ G such that g has order pr and h has order pq (where p, q, r are
primes and p 6= q) such that
I gr = hq;
I if p = r, then gp /∈ 〈hp〉.

Split graphs and threshold graphs

The graph Γ is a split graph if its vertex set can be partitioned
into two subsets A and B such that A induces a complete graph
and B a null graph, with arbitary edges between A and B.
The graph Γ is a threshold graph if its vertices v can be given
weights a(v) and there is a threshold t such that v and w are
joined if and only if a(v) + a(w) > t. Equivalently, a threshold
graph is one whose vertices can be enumerated as
(v1, v2, . . . , vn) in such a way that vi is joined to all or none of its
predecessors.

Theorem
I A graph is a split graph if and only if it contains no induced

subgraph isomorphic to C4, C5, or 2K2.
I A graph is a threshold graph if and only if it contains no induced

subgraph isomorphic to P4, C4, or 2K2.

Here 2K2 is the graph with four vertices and two disjoint edges.

Theorem
For a finite group, the following conditions are equivalent:
I Pow(G) is a split graph;
I Pow(G) is a threshold graph;
I Pow(G) has no induced subgraph isomorphic to 2K2;
I G does not have subgroups H1 and H2 such that each of H1 \H2

and H2 \H1 contains an element of order greater than 2;
I G is cyclic of prime power order, or an elementary abelian or

dihedral 2-group, or cyclic of order 2p, or dihedral of order 2pn or
4p, where p is an odd prime.

Note that this theorem is not restricted to nilpotent groups.

Perfect graphs

The clique number of a graph is the size of the largest induced
complete subgraph, while the chromatic number is the least
number of colours required to colour the vertices so that
adjacent vertices get different colours. The chromatic number is
at least as large as the clique number, since a complete
subgraph needs as many colours as vertices for a proper
colouring.
A graph Γ is called perfect if every induced subgraph of Γ has
clique number equal to chromatic number.
It is known that many types of graph are perfect, including
bipartite graphs, line graphs of bipartite graphs, and
comparability graphs of partial orders.
I review some of the main facts about this class of graphs.

The P4-structure of a graph Γ is the hypergraph whose
hyperedges are the subsets inducing a subgraph P4. Thus it is
the null hypergraph if and only if Γ is a cograph.
The weak, semi-strong and strong perfect graph theorems state:

Theorem
I (Lovász) The complement of a perfect graph is perfect.
I (Reed) If two graphs have isomorphic P4-structures and one is

perfect, then so is the other.
I (Chudnovsky et al.) A graph is perfect if and only if it has no

induced subgraph which is a cycle of odd length greater than 3 or
the complement of one.

The semi-strong theorem points up a possible connection with
cographs and twin reduction, which has not been explored.
Could it be true that graphs with isomorphic P4-structures have
cokernels with the same number of vertices?



Perfect graphs in the hierarchy

We will see later that the power graph of a finite group is
perfect.
For the other graph types, they may or may not be perfect;
there are few results about this, apart from a theorem of Britnell
and Gill about the commuting graph. They assume that the
group G has a component, a subnormal quasisimple subgroup,
and determine all the possible groups which can arise as
components if the commuting graph is perfect.

Question
For each graph type X in the hierarchy other than the power graph,
determine the finite groups G for which X(G) is perfect.



Lecture 4
The Gruenberg–Kegel

graph

The Gruenberg–Kegel graph

I knew Karl Gruenberg well. He was my colleague at Queen
Mary, University of London, from the time I moved there in
1986 until his death in 2007. His main work was in the
cohomology and integral representation of groups.
I was less well acquainted with Otto Kegel, but he visited
Oxford once a week for a term when I was a student there to
lecture on locally finite groups.

The Gruenberg–Kegel graph or GK graph for short (sometimes
called the prime graph) of a finite group G was introduced by
Gruenberg and Kegel in an unpublished manuscript in 1975.
They were concerned with the decomposability of the
augmentation ideal of the integral group ring of G.
The vertex set of the graph is the set of prime divisors of the
order of G (equivalently, by Cauchy’s theorem, the set of orders
of elements of prime order in G). It has an edge joining p and q
if and only if G contains an element of order pq (equivalently,
there are commuting elements of orders p and q).
We will see that this small graph has a big influence on the
much larger graphs of our hierarchy on the group G. In this
lecture I will trace some of these connections.

The theorem

The main theorem of Gruenberg and Kegel was a structure
theorem for groups whose GK graph is disconnected. This was
published by Williams (a student of Gruenberg) in 1981.
Recall the definitions of Frobenius group and 2-Frobenius
group from earlier:
I G is a Frobenius group if it has a non-trivial proper

subgroup H such that H ∩Hg = {1} for all g /∈ H. The set
of elements in no conjugate of H, together with the identity,
form a normal subgroup of G called the Frobenius kernel.

I G is a 2-Frobenius group if it has a normal series
{1}C N C M C G such that
I M is a Frobenius group with Frobenius kernel N;
I G/N is a Frobenius group with Frobenius kernel M/N.

Theorem
Let G be a finite group whose GK-graph is disconnected. Then one of
the following holds:
I G is a Frobenius or 2-Frobenius group;
I G is an extension of a nilpotent π-group by a simple group by a

π-group, where π is the set of primes in the connected
component containing 2.

Which simple groups can occur in the second conclusion of the
theorem? This question was investigated by Williams, though
he was unable to deal with groups of Lie type in
characteristic 2. The work was completed by Kondrat’ev in
1989, and some errors corrected by Kondrat’ev and Mazurov in
2000.

The GK graph is still a very active area of research. Some of the
questions considered are:
I Which groups are characterised by their GK graphs?
I Which groups are characterised by their labelled GK

graphs, where the vertices are labelled with the
corresponding primes, and how many different labellings
can a given graph have?



To mention just one example: the paw, or balalaika, consists of
a triangle with a pendant vertex. Among groups whose GK
graph is isomorphic to the paw are the alternating group A10
and the automorphism group of the sporadic Janko group J2.
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Note that the same primes occur but 2 and 3 swap places.

Graphs in the hierarchy determine the GK graph

Our first result shows that there is a connection between the
GK graph and the graphs in our hierarchy.

Theorem
Let X denote the power graph, enhanced power graph, deep
commuting graph, or commuting graph. If G and H are groups with
X(G) ∼= X(H), then the Gruenberg–Kegel graphs of G and H are
equal.

Proof.
Consider first the enhanced power graph or the commuting
graph. A maximal clique in one of these graphs is a maximal
cyclic (resp. abelian) subgroup of G. So p and q are joined in the
GK graph if and only if there is a maximal clique of the graph
having order divisible by pq.
A similar but slightly more elaborate proof works for the deep
commuting graph.
Finally, we saw that if the power graphs of G and H are
isomorphic, then so are the enhanced power graphs.

Conversely?

The converse is false, since the GK graph (even with labels)
does not determine the order of the group.
However, Natalia Maslova and I recently proved the following
theorem:

Theorem
There is a function F on the natural numbers with the property that,
if a finite n-vertex graph whose vertices are labelled by pairwise
distinct primes is the GK graph of more than F(n) finite groups, then
it is the GK graph of infinitely many finite groups.
The function we gave was O(n7); we believe that better bounds
are possible.
It is known that, if there exist infinitely many groups with a
given GK graph, then one of these groups has non-trivial
soluble radical.

Power graph and enhanced power graph

We previously met the GK graph in this context. Recall that G
is an EPPO group if all elements have prime power order. So
here is the theorem we saw earlier:

Theorem
Let G be a finite group. Then the following are equivalent:
I Pow(G) = EPow(G);
I G contains no subgroup Cp × Cq for distinct primes p, q;
I G is an EPPO group;
I the GK graph of G has no edges.

I discussed the classification of EPPO groups in Lecture 2. The
theorem of Gruenberg and Kegel is an essential ingredient in
the proof.

Connectedness

The questions of connectedness of the graphs in the hierarchy
will be discussed in much more detail in the next lecture. Here
I simply want to point to a couple of connections with the GK
graph.
In Com(G), elements of Z(G) are joined to all other vertices. So
it is natural to remove them and ask if what is left is still
connected. I will be concerned here with groups satisfying
Z(G) = {1}, so that the only vertex joined to all others in the
commuting graph is the identity. Clearly the same is true for
graphs below the commuting graph in the hierarchy.
So, for groups G with Z(G) = {1}, the notations Com−(G) and
Pow−(G) will denote the induced subgraphs of Com(G) and
Pow(G) on G \ {1}, and call them the reduced commuting and
power graphs. (These notations will be generalised in the next
lecture.)



The reduced commuting graph

The next theorem was perhaps folklore until it was made
explicit in a paper by Morgan and Parker, which I will discuss
in the next lecture.

Theorem
Let G be a finite group with Z(G) = {1}. Then the reduced
commuting graph of G is connected if and only if the GK graph is
connected.
The proof does not use the Classification of Finite Simple
Groups, or even the structure of groups with disconnected GK
graph. I outline it on the next three slides.

Proof
Suppose first that Z(G) = 1 and the commuting graph is
connected. Let p and q be primes dividing |G|. Choose
elements g and h of orders p and q respectively, and suppose
their distance in the commuting graph is d. We show by
induction on d that there is a path from p to q in the GK graph.
If d = 1, then g and h commute, so gh has order pq, and p is
joined to q.

So assume the result for distances less than d, and let
g = g0, . . . , gd = h be a path from g to h.
Let i be mimimal such that p does not divide the order of gi (so
i > 0). Now some power of gi−1, say ga

i−1, has order p, while a
power gb

i of gi has prime order r 6= p.
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Orders written in red under the vertices

The distance from gb
i to gd is at most d− i < d, so there is a path

from r to q in the GK graph. But ga
i−1 and gb

i commute, so p is
joined to r.

For the converse, assume that the GK graph is connected.
Note first that for every non-identity element g, some power of
g has prime order, so it suffices to show that all elements of
prime order lie in the same connected component of the
commuting graph. Also, since a non-trivial p-group has
non-trivial centre, the non-identity elements of any Sylow
subgroup lie in a single connected component.
Let C be a connected component. Connectedness of the GK
graph shows that C contains a Sylow p-subgroup for every
prime p dividing |G|. Also, every element of C, acting by
conjugation, fixes C. It follows that the normaliser of C is G,
and hence that C contains every Sylow subgroup of G, and thus
contains all elements of prime order, as required.

The reduced power graph

A similar result holds in one direction for the reduced power
graph of a group with trivial centre:

Proposition

Let G be a group with Z(G) = {1}. If Pow−(G) is connected, then
the GK-graph of G is connected.
The proof is left as an exercise for the reader.

Is the power graph a cograph?

The GK graph is also relevant to this question. There is a
necessary condition, and a sufficient condition, for the power
graph of a group to be a cograph, in terms of the GK graph.
However, we will see that there is no necessary and sufficient
condition.

Theorem

1. Suppose that all connected components of the GK graph are
singletons (that is, G is an EPPO group). Then the power graph
of G is a cograph.

2. Suppose that G is insoluble, and that the power graph of G is a
cograph. Then every connected component of the GK graph of G
except possibly the component containing the prime 2 has size at
most 2.



No necessary and sufficient condition

Consider the two simple groups PSL(2, 11) and M11. The order
of each has prime divisors 2, 3, 5 and 11, and each contains
elements of order 6 but none of other orders pq for distinct
primes p, q.
So in each case the GK graph has an edge {2, 3} and isolated
vertices 5 and 11.
However, Pow(PSL(2, 11)) is a cograph, but Pow(M11) is not.
We saw this for PSL(2, 11) earlier; we will discuss M11 in more
detail later.

Proof.
1. Suppose that G is an EPPO group. Then, in Pow−(G), there
are no edges between elements of distinct prime power orders,
so it suffices to show that the induced subgraph on the set of
elements of p-power order is a cograph. This is proved by the
same argument as that showing that the power graph of a
group of prime power order is a p-group.

2. A result in the paper of Williams shows that, if π is a
connected component of the GK graph of an insoluble group G
which does not contain the prime 2, then G has a nilpotent Hall
π-subgroup. By my result with Manna and Mehatari, if the
power graph of such a subgroup H is a cograph, then H is
either of prime power order or cyclic of order pq, where p and q
are distinct primes.

A difference

This is an isolated result to show that it is possible to say
something about the differences between graphs in the
hierarchy. We let (Com− Pow)(G) be the graph whose edges
are those of Com(G) which are not edges of Pow(G).

Theorem
Suppose that the finite group G satisfies the following conditions:
I The Gruenberg–Kegel graph of G is connected.
I If P is any Sylow subgroup of G, then Z(P) is non-cyclic.

Then the induced subgraph of (Com−Pow)(G) on G \ {1} either
has an isolated vertex or is connected.
The hypotheses are very much too strong, and the conclusion
rather weak; surely it is possible to do better.

Proof
Let Γ(G) denote the induced subgraph of (Com−Pow)(G) on
G \ {1}. Note that, if H is a subgroup of G, then the induced
subgraph of Γ(G) on H \ {1} is Γ(H).
First we show that, if P is a p-group, then Γ(P) is connected. Let
Q 6 Z(P) with Q ∼= Cp × Cp. Then the induced subgraph on
Q \ {1} is complete multipartite with p + 1 blocks of size p− 1,
corresponding to the cyclic subgroups of Q. So it suffices to
show that any element z of P \ {1} has a neighbour in Q \ {1}.
We see that z commutes with Q since Q 6 Z(P); and 〈z〉 ∩Q is
cyclic so there is some element of Q not in this set.
Now let C be a connected component of Γ(G) containing an
element z of prime order p. Since Γ(G) is invariant under
Aut(G), in particular it is normalized by all its elements, so
〈C〉 6 NG(C). In particular, C contains a Sylow p-subgroup of G
(one containing the given element of order p in C).

If C contains an element of prime order r, and {r, s} is an edge
of the GK graph, then G contains an element g of order rs, then
without loss of generality gs ∈ C, and gs is joined to gr in Γ(G),
so also gr ∈ C. Now connectedness of the GK graph shows that
C contains a Sylow q-subgroup of G for every prime divisor of
|G|. Hence |NG(C)| is divisible by every prime power divisor of
|G|, whence NG(C) = G.
Finally, let g be any non-identity element of G. Choose a
maximal cyclic subgroup K containing g. If CG(K) = K, then the
generator of K commutes only with its powers, and is isolated
in Γ(G). If not, then there is an element of prime order in
CG(K) \K. (If h ∈ CG(K) \K, then 〈g, h〉 is abelian but not cyclic,
so contains a subgroup 〈g〉 × Cm for some m; choose an element
of prime order in the second factor.) This element is joined to g
in the commuting graph but not in the power graph; so g ∈ C.
We conclude that C = G \ {1}, and the proof is done.



Lecture 5
Connectedness

Connectedness

In this lecture we look more systematically at connectedness of
the graphs in the hierarchy, their complements, and related
graphs such as intersection graphs of subgroups of various
types.
As well as questions of connectedness, we will be interested in
bounds for the diameter of connected components.
In the commuting graph, as we have seen, vertices in the centre
Z(G) are joined to all others; so, to make the question
non-trivial, we remove these vertices. Our first task is to look at
the other graphs in the hierarchy and determine which vertices
are joined to all others.

Dominating vertices

For each graph type X in the hierarchy, we let ZX(G) denote the
set of vertices which are joined to all other vertices of G.

Theorem
I ZPow(G) is equal to G if G is cyclic of prime power order; or the

set consisting of the identity and the generators if G is cyclic of
non-prime-power order; or Z(G) if G is a generalized quaternion
group; or {1} otherwise.

I ZEPow(G) is the product of the Sylow p-subgroups of Z(G) for
p ∈ π, where π is the set of primes p for which the Sylow
p-subgroup of G is cyclic or generalized quaternion; in
particular, ZEPow(G) is cyclic.

I ZDCom(G) is the projection into G of Z(H), where H is a Schur
cover of G.

I ZCom(G) = Z(G).

Note that, in all cases except ZPow(G) where G is cyclic of
non-prime-power order, ZX(G) is a subgroup of G.
By contrast, ZNGen(G) is more mysterious. It contains the
Frattini subgroup of G, and also the centre, but it may not be a
subgroup. For example, if G = C6 × C6, then ZNGen(G) is the
union of the Sylow 2- and 3-subgroups of G.
We now formally define the reduced graph X−(G) of each type
X in the hierarchy to be the induced subgraph of X(G) on
G \ ZX(G).

The commuting graph

The question was first investigated for the commuting graph.
Early results led Iranmanesh and Jafarzadeh to conjecture that
there is an absolute upper bound on the diameter of any
connected component of the reduced commuting graph. This
was refuted by Giudici and Parker, but Morgan and Parker
showed that it is true for groups with trivial centre:

Theorem
I For any given d there is a 2-group whose reduced commuting

graph is connected with diameter greater than d.
I Suppose that the finite group G has trivial centre. Then every

connected component of its reduced commuting graph has
diameter at most 10.

Power graph and enhanced power graph

For the power graph and enhanced power graph, we note that,
if the group G is not cyclic or generalized quaternion, then
ZPow(G) = ZEPow(G) = {1}. For such groups, the question has
been considered by several authors.
The next result shows that we have only one rather than two
problems to consider.

Proposition

Let G be a group with Z(G) = {1}. Then the reduced power graph of
G is connected if and only if the reduced enhanced power graph of G
is connected.

Proof.
The forward implication is trivial; for the reverse, if x and y are
joined in the enhanced power graph, they are joined by a path
of length 2 in the power graph, whose intermediate vertex is
not the identity.



The non-generating graph

From CFSG, we know that every non-abelian finite simple
group is 2-generated. Thus, at least for simple groups, the
non-generating graph is not complete.
It is further known that, if G is non-abelian simple, then
ZNGen(G) = {1} (we’ll see a stronger result shortly); so for the
reduced graph, only the identity needs to be deleted.
Shen proved that the reduced non-commuting graph is
connected. Recently Saul Freedman proved the following
theorem.

Theorem
Let G be a non-abelian finite simple group. Then the reduced
non-generating graph of G is connected with diameter at most 5.
It is not currently known whether diameter 5 is realised; the
best upper bound is either 4 or 5. These results will be in Saul’s
thesis and are not yet available.

Complements

We now consider the complements of the graphs in the
hierarchy. We begin with a few remarks.
I For any graph type X in the hierarchy, ZX(G) is the set of

elements of G which are isolated in X(G)c.
I Taking complements reverses the order. So moving down

the hierarchy adds edges to the complement.
I As a result, if G is a group and X and Y are graph types

with X below Y for which ZX(G) = ZY(G), then
connectedness of Y(G)c implies connectedness of X(G)c.

In particular, if G is a non-abelian finite simple group, then for
any type X in the hierarchy, (X(G)−)c (the complement of the
reduced X graph on G) is connected with diameter at most 5.

Here is a result which applies to the commuting graphs of
arbitrary groups.

Proposition

Let Γ be a graph whose vertex set is a group G, and suppose that for
any vertex g ∈ G, the closed neighbourhood of g is a subgroup of G.
Then the complementary graph has just one connected component of
size larger than 1; this component has diameter at most 2.

Proof.
The isolated vertices in the complement of Γ are the vertices
whose closed neighbourhood in Γ is the whole of G. Let g1, g2
be two elements of G which are not isolated in the complement
of Γ. Then H1 = {g1} ∪N(g1) and H2 = {g2} ∪N(g2) are
subgroups of G, where N(g) is the open neighbourhood of g.
Since a finite group cannot be written as the union of two
proper subgroups (a simple consequence of Lagrange’s
Theorem), there is a vertex h outside these two subgroups,
hence joined to g1 and g2 in the complement.

From this result, it is easy to see that the complement of the
deep commuting graph of a group G is connected with
diameter 2 apart from isolated vertices. (The Proposition
applies because the closed neighbourhood of a vertex is its
centraliser.)
With a little more effort, it can be shown that the complement
of the power graph is connected apart from isolated vertices.
Two questions remain, which are perhaps not too difficult:

Question
What is the best upper bound for the diameter of the non-trivial
component of the complement of the power graph (assuming that G is
not cyclic of prime power order)?

Question
What about the enhanced power graph?

Intersection graphs

We can apply some of these results to another type of graph
obtained from a finite group G.
Let G be a group which is not trivial and not cyclic of prime
order. Let F be a family of non-trivial proper subgroups of G.
The intersection graph of F is the graph whose vertices are the
subgroups in F , with H joined to K whenever H ∩ K 6= {1}.
If we just speak of the intersection graph of G, we take F to
consist of all non-trivial proper subgroups of G.

Bipartite graphs

Let B be a bipartite graph: this means there is a bipartition of
the vertex set, a partition into two parts X and Y, such that all
edges of the graph have one vertex in X and one in Y.
A connected bipartite graph has a unique bipartition: choose a
vertex v, and put all vertices at even distance from v into X and
all those at odd distance into Y.
A disconnected bipartite graph has more than one bipartition
(indeed, it has 2k−1 bipartitions, where k is the number of
connected components). But we will choose a fixed bipartition,
and regard it as part of the structure of the graph.
Note that X and Y induce null subgraphs of B.



Duality

Let B be a bipartite graph with bipartition {X, Y}. The halved
graphs of B are the graphs Γ and ∆ with vertex sets X and Y
respectively, such that two vertices in one of these sets are
joined by an edge in the corresponding halved graph if and
only if they lie at distance 2 in B.
We say that a pair Γ, ∆ of graphs are dual to each other if there
is a bipartite graph with no isolated vertices such that Γ and ∆
are isomorphic to its halved graph.

Dual graphs arise, for example, in incidence geometry. If B is an
incidence structure consisting of points and lines, with each
point on a line and each line containing a point, then we can
represent B as a bipartite graph whose vertices are the points
and lines, two vertices joined if they are a point and a line and
are incident.
The halved graphs are called the point graph and line graph of
the incidence structure.
Duality also arises in the theory of experimental design in
statistics, but I will not detour to discuss this.

Connectedness and diameter

Theorem
Let Γ and ∆ be dual graphs. Then Γ is connected if and only if ∆ is
connected. More generally, there is a bijection between the connected
components of Γ and those of ∆, with the property that the diameters
of corresponding components differ by at most 1.

Proof.
The correspondence is given by the rule that a component of Γ
and one of ∆ correspond if some vertex of Γ is joined to a vertex
of ∆ in the graph B.
If two vertices v, w of Γ have distance d in Γ, then they have
distance 2d in B, and neighbours of v and w have distance
2d− 2, 2d or 2d + 2 in B, hence distance d− 1, d or d + 1 in
∆.

A problem

Question
Are there other graph-theoretic properties which can be transferred
from a graph to its dual?
Under some (rather strong) regularity conditions, the spectrum
of each graph is determined by the spectrum of the other.

First application

Theorem
For any finite group G which is not cyclic, the non-generating graph
of G on G# = G \ {1} and the intersection graph of G are duals.

Proof.
We define B by the rule that the element g ∈ G and the
non-trivial proper subgroup H ≤ G are joined if g ∈ H. Since G
is not cyclic, for every g 6= 1, the subgroup 〈g〉 is non-trivial and
proper; and any non-trivial subgroup H contains a non-identity
element.
Now g and h are joined in NGen(G) if and only if 〈g, h〉 6= G;
and H and K are joined if and only if there is a non-identity
element g ∈ H ∩ K.

The intersection graph

The intersection graph of a finite group was first investigated
by Csákány and Pollák, who considered non-simple groups;
they determined the groups for which the intersection graph is
connected and showed that, in these cases, its diameter is at
most 4.
For simple groups, Shen showed that the graph is connected
and asked for an upper bound; Herzog et al. gave a bound of
64, which was improved to 28 by Ma, and to the best possible 5
by Freedman, who showed that the upper bound is attained
only by the Baby Monster and some unitary groups (it is not
currently known exactly which).
(Recall here that the diameter of the non-generating graph of a
finite simple group is known to be at most 5; no examples with
diameter 5 are known.)



A refinement

We don’t need to take all subgroups here:

Theorem
If G is non-cyclic, then the induced subgraph of NGen(G) on G# and
the intersection graph of maximal proper subgroups of G are dual.

Proof.
We simply have to note that two elements g, h ∈ G which don’t
generate G are contained in some maximal subgroup of G.
So results about connectedness transfer to this graph as well.

Other examples

Theorem
Suppose that G is non-trivial and Z(G) = {1}. Then the reduced
commuting graph of G and the intersection graph of abelian
subgroups (or of maximal abelian subgroups) of G are duals.

Proof.
We simply have to note that two elements which commute are
contained in a (maximal) abelian subgroup of G, which is
proper since G is nonabelian.

Recall that, for groups with trivial centre, connectedness of the
Gruenberg–Kegel graph is equivalent to connectedness of the
reduced commuting graph; so it is also equivalent to
connectedness of the intersection graph of (maximal) abelian
subgroups.
We also have an upper bound for the diameter of connected
components.
A similar result holds for the enhanced power graph and the
intersection graph of (maximal) cyclic subgroups. I leave its
formulation and proof as an exercise.

Differences

Of course, questions about connectedness of differences
between graphs in the hierarchy can also be asked.
The case of (NGen−Com)(G) has been investigated by Saul
Freedman, under the name non-commuting non-generating
graph.
Results for nilpotent groups have already appeared:

Theorem
Let G be a finite nilpotent group. Then the induced subgraph of
(NGen−Com)(G) on G \ Z(G) is connected of diameter 2 or 3,
apart from isolated vertices. If the diameter is 3, then there are no
isolated vertices.

Other differences

We saw a rather weak result for (Com− Pow)(G) in the last
lecture.
But, for the most part, this is unexplored territory.



Lecture 6
Universality

Partial preorders and partial orders

A partial preorder is a binary relation on a set X, which I will
denote by→, which is reflexive and transitive; that is,
I for all x ∈ X, x→ x (that is, regarded as a directed graph,

there is a loop at each vertex);
I for all x, y, z ∈ X, if x→ y and y→ z then x→ z.

A partial preorder is sometimes called a preferential
arrangement. If we arrange, say, political candidates in order of
preference, there may be some pairs of candidates about whom
we are indifferent.
A partial order is a partial preorder which is antisymmetric;
that is, it also satisfies the condition
I for all x, y ∈ X, if x→ y and y→ x then x = y.

The structure theorem

Given a partial preorder→ on X, define a relation ≡ by the rule
that x ≡ y if x→ y and y→ x. In the language of preferential
arrangements, that means we are indifferent about x and y.

Theorem
Let→ be a partial preorder on X.
I The relation ≡ is an equivalence relation on X.
I If [x] denotes the equivalence class containing x, then the

relation on X/≡ defined by [x] 4 [y] if x→ y is independent of
the choice of representatives of the equivalence classes, and is a
partial order.

The proof is an exercise.

Comparability graph
The comparability graph of a partial preorder is the graph on
the vertex set X, in which {x, y} is an edge if x 6= y and either
x→ y or y→ x (or both). (Note that, as usual in graph theory,
we have removed loops.)

Theorem
The graph Γ is the comparability graph of a partial order if and only if
it is the comparability graph of a partial preorder.

Proof.
The forward implication is clear. For the converse, let→ be a
partial preorder, and ≡ the equivalence relation defined on the
preceding slide. Refine→ by imposing a total order on each
≡-class. The result is a partial order with the same
comparability graph.
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Dilworth’s Theorem

Recall that a graph Γ is perfect if every induced subgraph has
clique number equal to chromatic number.

Theorem
(Dilworth) The comparability graph of a partial order, and its
complement, are perfect.

Proof
Since a subgraph of a comparability graph is a comparability
graph, it suffices to show that a comparability graph (or its
complement) has clique number equal to chromatic number.
Now a clique in a comparability graph is a chain (a set of
pairwise comparable elements), and an independent set is an
antichains (a set of pairwise incomprabale elements).

So we have to prove that
I if the size of a maximal chain is c, there is a partition into c

antichains;
I if the size of a maximal antichain is a, there is a partition

into a chains.
The first is straightforward: partition the points by the length of
the longest chain ending at that point. The second is the
essence of the theorem.

By the Weak Perfect Graph Theorem, the second part follows
from the first; but of course this postdates Dilworth’s Theorem.



The power graph is a comparability graph

Theorem
The power graph of a finite group G is the comparability graph of a
partial order.

Proof.
The directed power graph (with loops) is a partial preorder; for
I x = x1;
I if y = xm and z = yn then z = xmn.

The power graph is its comparability graph.
Is there anything more special about the class of power graphs?

Universality

In a certain sense, the answer is no:

Theorem
Let the finite graph Γ be the comparability graph of a partial order.
Then there is a finite group G such that Γ is isomorphic to an induced
subgraph of Pow(G).
The proof is coming up shortly. But I note here two questions
which can be asked about this and other similar results:

Question
Find an upper bound on the function f such that, given any n-vertex
comparability graph, there is a group of order at mot f (n) in whose
power graph we can embed Γ.

Question
Find an upper bound on the function F such that there exists a group
of order at most F(n) whose power graph embeds every comparability
graph on at most n vertices.

Proof.
Let Γ be the comparability graph of a partial order 4 on
{1, . . . , n}. Let p1, . . . , pn be distinct primes, and take
G = Cp1 × · · · × Cpn , where Cpi = 〈ai〉.
Now let Ai = {j ∈ {1, . . . , n} : j 4 i}. It is routine to check that
Aj ⊆ Ai if and only if j 4 i, and Aj = Ai if and only if j = i.
Now put bi = ∏{aj : j ∈ Ai}. Check that the following are
equivalent:
I bi and bj are joined in Pow(G);
I one of Ai and Aj contains the other;
I i and j are joined in Γ.

Other graphs

Theorem
Let X denote one of EPow, DCom, Com, NGen. Then, given any
finite graph Γ, there is a group G such that Γ is isomorphic to an
induced subgraph of X(G).
In other words, all the other graph types in the hierarchy are
universal. So any graph property defined by forbidden induced
subgraphs (such as being perfect, a cograph, a threshold graph,
etc.) will fail to hold in the graph defined on some groups.
I have previously mentioned some instances of the general
problem:

Question
Given a graph type X, and a class C of graphs defined by forbidden
induced subgraphs, determine the groups G for which X(G) ∈ C.

Three more

The next three graphs in the hierarchy can be dealt with
together, by an argument which also suggests several further
open problems.

Theorem
Let Γ be a finite complete graph, whose edges are coloured red, green
and blue in any manner. Then there is an embedding of Γ into a finite
group G so that
1. vertices joined by red edges are adjacent in the enhanced power

graph;
2. vertices joined by green edges are adjacent in the commuting

graph but not in the enhanced power graph;
3. vertices joined by blue edges are non-adjacent in the commuting

graph.

We can get several results by specialising this construction:
I If we ignore the green/blue distinction, we get an

embedding of an arbitrary graph in the enhanced power
graph of a group.

I If we ignore the red/green distinction, we get an
embedding of an arbitrary graph in the commuting graph
of a group.

I If we simply have no green edges, then we have
simultaneously embedded the red graph in the enhanced
power graph, the deep commuting graph, and the
commuting graph.

I If we ignore the red/blue distinction, we get an
embedding of an arbitrary graph in the graph
(Com− EPow)(G) for some group G.



Proof
We begin with two observations. First, the direct product of
cyclic (resp. abelian) groups of coprime orders is cyclic (resp.
abelian).
Second, consider the non-abelian group of order p3 and
exponent p2, where p is an odd prime:

P = 〈a, b | ap2
= bp = 1, [a, b] = ap〉.

Any two elements of 〈a〉 generate a cyclic group; and the group
generated by b and x is cyclic if x = 1, abelian but not cyclic if
x = ap, and non-abelian if x = a.

The proof is by induction on the number n of vertices. The
result is clearly true if n = 1. So let {v1, . . . , vn} be the vertex set
of Γ, and suppose that we have an embedding of {v1, . . . , vn−1}
into a group G satisfying conditions 1–3 of the theorem.
Choose an odd prime p not dividing |G|, and consider the
group P×G, where P is as above. Modify the embedding of the
first n− 1 vertices by replacing vi by (1, vi) if {vi, vn} is red, by
(ap, vi) if {vi, vn} is green, and by (a, vi) if {vi, vn} is blue. It is
easily checked that we still have an embedding of
{v1, . . . , vn−1} satisfying 1–3.
If we now embed vn as (b, 1), we find that the conditions hold
for the remaining pairs as well.

The non-generating graph

Finally we show the same universality property for the
non-generating graph. First, we need a preliminary result.

Theorem
Every graph without isolated vertices and edges can be represented as
the intersection graph of a family of sets (that is, the vertices are
identified with the sets, two vertices adjacent if the corresponding sets
have non-empty intersection).

Proof.
Let E be the edge set of Γ, and for each vertex v, let Sv be the set
of edges incident with v. Then

Sv ∩ Sw =

{
{e} if e = {v, w};
∅ if v and w are not joined.

Given a graph Γ, we want to embed Γ as an induced subgraph
of the non-generating graph of a group. We do this in four
steps.
Step 1 Replace Γ by its complement, and represent this graph
as an intersection graph.
Step 2 Add some dummy points, each lying in just one of the
sets, so that they all have the same cardinality k, with k ≥ 3.
Now add some dummy points in none of the sets so that the
cardinality n of the set Ω of points satisfies the conditions that
n > 2k and n− k is prime.
Step 3 Now replace each set by its complement. The
complements of two subsets of Ω have union Ω if and only if
the two sets are disjoint. Thus, each original vertex is now
represented by an (n− k)-set where two such sets have union
Ω if and only if the corresponding vertices are adjacent in Γ.

Step 4 Replace each set by a cyclic permutation on that set,
fixing the remaining points. Each of these cycles has odd prime
length, so each is an even permutation, and so lies in the
alternating group An. Let gv be the permutation corresponding
to the vertex v of Γ.
I If v and w are nonadjacent, then the supports of gv and gw

have union strictly smaller than Ω, so 〈gv, gw〉 6= An.
I Suppose v and w are adjacent. Then the supports of gv and

gw have union Ω, so H = 〈gv, gw〉 is transitive on Ω. Using
Jordan’s theorem, we conclude that H contains the
alternating group An. Since it is generated by even
permutations, H = An.

Further properties and parameters

There are a vast number of graph properties and parameters,
many of which have been studied for individual graph types in
the hierarchy.
For example, a survey of power graphs in 2013 included nearly
100 references, while a survey of developments since then has
another nearly 100 references.
I will not even attempt to summarise all this work. Instead, I
will say a small amount about cliques (complete subgraphs)
and independent sets (null induced subgraphs). The clique
number ω(Γ) is the number of vertices in the largest clique,
and the independence number α(Γ) is the number of vertices in
the largest independent set.
Since power graphs are perfect, the clique number of Pow(G) is
equal to its chromatic number, and the independence number
is equal to the clique cover number.



For three of our types, the clique number has a group-theoretic
interpretation:

Proposition

I The clique number of EPow(G) is equal to the maximal order of
a cyclic subgroup of G.

I The clique number of Com(G) is equal to the maximum order of
an abelian subgroup of G.

I The clique number of DCom(G) is equal to the maximum order
of a subgroup of G which lifts to an abelian subgroup in a Schur
cover of G.

The only thing that needs comment is that, if a set of elements
in a group has the property that any two generate a cyclic
group, then the whole set is contained in a cyclic group. The
proof is an exercise.

Clique number of the power graph

We begin with cyclic groups. The clique number of Pow(Cn)
was determined by Alireza et al. in 2015. I give a slightly
different account.
Define a function f on the natural numbers recursively by the
rule
I f (1) = 1;
I for n > 1, f (n) = φ(n) + f (n/p), where φ is Euler’s totient

function and p is the smallest prime divisor of n.

Theorem
The clique number of Pow(Cn) is equal to f (n).

Proof.
The group Cn has φ(n) generators; they are dominating vertices
in the power graph, so are contained in every maximal clique.
It can be shown that the remainder of any maximal clique is
contained in a proper subgroup, and the best we can do is to
take a maximum-size clique in the largest proper subgroup, the
cyclic group of order n/p. Now induction gets us home.
The function f has a curious property:

Proposition

f (n) ≤ 3φ(n).
In fact, the limit superior of the ratio f (n)/φ(n) is about
2.6481017597 . . .. Sean Eberhard has observed that it is equal to

∞

∑
k=0

k

∏
i=1

1
pi − 1

,

where p1, p2, . . . are the primes in order.

General groups

Rather confusingly, group theorists use the symbol ω(G) for
the spectrum of G, the set of orders of elements of G.

Theorem
Let G be a finite group.
I ω(EPow(G)) = max ω(G).
I ω(Pow(G)) = max{f (m) : m ∈ ω(G)}.

We have seen the first statement; the second holds since a
clique in Pow(G) is a clique in EPow(G), which is contained in
a cyclic subgroup.
The function f is not monotonic, so it is not true that
ω(Pow(G)) = f (ω(EPow(G))). Let G = PGL(2, 11). The
maximal elements of ω(G) are 10, 11 and 12; so
ω(EPow(G)) = 12. We have f (10) = f (12) = 9 and f (11) = 11,
so ω(Pow(G)) = 11.



Lecture 7
Onward and upward

I begin this lecture with some comments about extending the
hierarchy upwards.
Let C be a class of groups, which we suppose to be closed under
taking subgroups. Then we can define a graph type on a group
G by the rule that x and y are joined if and only if 〈x, y〉 ∈ C.
We have already seen two examples. Taking C to be the class of
cyclic groups gives the enhanced power graph, while taking C
to be the class of abelian groups gives the commuting graph.
The obvious classes to take are the classes of nilpotent groups
and soluble groups, giving the graphs Nilp(G) and Sol(G),
lying above Com(G) in the hierarchy. If G is insoluble, then
they both lie below NGen(G).

Minimal excluded groups

For our study, we need the analogue of the Miller–Moreno
theorem:

Theorem
I A minimal non-nilpotent group is 2-generated.
I A minimal insoluble group is 2-generated.

Minimal non-nilpotent groups were classified by Schmidt;
these groups are called Schmidt groups. By inspection, they are
2-generated and soluble.
I do not know a complete classification of minimal insoluble
groups. But if G is such a group, and S is its soluble radical,
then G/S is a minimal (non-abelian) simple group; such groups
were classified by Thompson (in his N-group paper), and all
are 2-generated (without using CFSG). If we take generators of
G/S and lift to G, the resulting elements generate G (by
minimality, since the subgroup they generate is insoluble).

Nilp(G) and Sol(G)

Theorem

1. For any finite group G, we have
E(Com(G)) ⊆ E(Nilp(G)) ⊆ E(Sol(G)).

2. E(Com(G)) = E(Nilp(G)) if and only if all the Sylow
subgroups of G are abelian.

3. E(Nilp(G)) = E(Sol(G)) if and only if G is nilpotent.
4. E(Com(G)) = E(Sol(G)) if and only if G is abelian.
5. If G is non-nilpotent, then E(Nilp(G)) ⊆ E(NGen(G));

equality holds if and only if G is a Schmidt group.
6. If G is insoluble, then E(Sol(G)) ⊆ E(NGen(G)); equality

holds if and only if G is a minimal insoluble group.

We have observed the first part already, while parts 5 and 6
follow from the fact that these groups are 2-generated.

Proof of 2 Suppose that E(Com(G)) = E(Nilp(G)). Then two
elements from the same Sylow subgroup of G generate a
nilpotent group; hence they commute. Conversely, if the Sylow
subgroups are abelian, then a nilpotent subgroup is the product
of its Sylow subgroups and hence is abelian.

Proof of 3 Suppose that E(Nilp(G)) = E(Sol(G)). If G is not
nilpotent, it contains a minimal non-nilpotent subgroup, a
Schmidt group, which is 2-generated and soluble, hence
nilpotent, a contradiction. Conversely, if G is nilpotent, then
Nilp(G) is complete.

Proof of 4 If Com(G) and Sol(G) coincide, then G is nilpotent
with abelian Sylow subgroups, hence is abelian. The converse
is clear.

Dominating vertices

Recall that, if X is a graph type, then ZX(G) is the set of vertices
of X(G) which are joined to all others.
The first part of the following theorem was proved by
Abdollahi and Zarrin, the second by Guralnick et al.

Theorem
For any finite group G,
I ZNilp(G) is the hypercentre of G (the last term in the ascending

central series for G);
I ZSol(G) is the soluble radical of G.

Note that both are subgroups of G.
Now we are all set up for an analysis of these graphs along the
lines we have seen for the lower terms in the hierarchy. But not
much has been done on this, except for universality.



Universality

We can catch three birds in one net here.
Recall that any graph can be represented as an intersection
graph of a linear hypergraph (two sets corresponding to
adjacent vertices agreeing in one point). Now take the
complement of Γ, represent it in this way, add dummy points
so that each set has the same prime cardinality p > 2, and
replace each set by a cycle with the given set as support.
Two disjoint cycles commute, while two intersecting cycles
generate the alternating group A2p−1, which is not soluble.
Hence we have shown that Γ can be embedded in Com(G),
Nilp(G), and Sol(G), for some group G (the group generated by
all the p-cycles, which is a product of alternating groups).

Indeed, for p > 3, we can catch another bird.
Assume that the complement of Γ is connected. (This can be
achieved by adding an isolated vertex to Γ if necessary.) Then
the group generated by the cycles is the alternating group on
the union of the supports of the cycles.
Its Schur multiplier has order 2, so the lift of Cp × Cp to the
Schur cover splits, and so disjoint p-cycles are joined in the
deep commuting graph. So we can add DCom(G) to our tally.

The Engel graph

We define, for each positive integer k, and all x, y ∈ G, the
element [x, ky] of G to be the left-normed commutator of x and k
copies of y; more formally,
I [x, 1y] = [x, y] = x−1y−1xy,
I for k > 1, [x, ky] = [[x, k−1y], y].

Abdollahi defined x and y to be adjacent if [x, ky] 6= 1 and
[y, kx] 6= 1 for all k. To fit with the earlier philosophy I will
redefine it to be the complement of this graph. If we do this
then we have a similar situation to that arising with the power
graph.
We can define the directed Engel graph to have an arc from x to
y if [y, kx] = 1 for some k. Then the Engel graph is the graph in
which x and y are joined if there is an arc from one to the other.
The directed graph may also have a role to play here.

Zorn showed that, if a finite group G satisfies an Engel identity
[x, ky] = 1 for all x, y (for some k), then G is nilpotent; so the
finite groups for which the directed Engel graph is complete
are the same as those for which the nilpotency graph is
complete. (For infinite groups, this is not true, though the result
has been shown in a number of special cases.)
So there is a close connection between the Engel graph and the
nilpotency graph. But they are not equal in general. For
example, in the group S3, there is an arc of the directed Engel
graph from each element of order 3 to each element of order 2,
but not in the reverse direction.

Question
What can be said about the relation between the Engel and nilpotency
graphs? In particular, in which groups are they equal?

The Engel centre

Question
Which elements of the group G are joined to all others in the Engel
graph?
I think the answer should be the Fitting subgroup, F(G), the
largest normal nilpotent subgroup of G. It is true that in the
directed Engel graph, if x ∈ F(G), then x→ y for all y ∈ G. For
[y, x] ∈ F(G), and so repeated commutation with x results in the
identity.
But I cannot at present prove the converse.

More graphs

A wide generalisation has been considered by Lucchini and
Nemmi. Let F be a saturated formation of groups. (A formation
is a class of groups closed under quotients and subdirect
products; the formation F is saturated if G/Φ(G) ∈ F implies
G ∈ F, where Φ(G) is the Frattini subgroup of G. Now the
F -graph of G can be defined by joining x and y if 〈x, y〉 ∈ F.
Their results concern the set of vertices joined to all others in
the F-graph of G (that is, the isolated vertices in the
complement), and the connectedness of the complement apart
from these isolated vertices. However, time precludes my
giving details.



Automorphisms

Because these graphs are so closely connected with the groups
they live on, you would expect their automorphism groups to
reflect this structure.
If you construct the power graph of A5, and work out the order
of its automorphism group, you come up with the answer

668594111536199848062615552000000.

What is going on??
After removing the identity (which is fixed by all
automorphisms), the graph is a disjoint union of cliques
corresponding to the cyclic subgroups: 15 isolated points, 10
cliques of size 2 and 6 of size 4. So we have a normal subgroup
n fixing all these, with structure S10

2 × S6
4, and the quotient is

S15 × S10 × S6; the product of the orders of these groups is the
number quoted earlier.

The group M11

Here is a more interesting example, the sporadic Mathieu
group M11 of order 7920.
If we remove the identity, and then do closed twin reduction,
and then open twin reduction, we reach a twin-free graph, the
cokernel of the reduced power graph. It has 1210 vertices, and
its automorphism group is exactly M11. In fact this graph is
bipartite, and the group acts with four orbits, of sizes 165
(twice), 220 and 660. Lurking in there is a very interesting
bipartite graph with blocks of sizes 165 and 220, having
diameter and girth equal to 10 (and again automorphism group
M11.
It should be said that things are not always so interesting. It
often happens that the original group “gets lost in the noise”.

General results

To mention a couple of general results that we have seen
implicitly:

Theorem
For each graph type X in the hierarchy, and any non-trivial group G,
the group Aut(X(G)) has a non-trivial (usually large) normal
subgroup which is a direct product of symmetric groups on the twin
classes.

Theorem
The automorphism group of a cograph is built from the trivial group
by the operations of direct product and wreath product with a
symmetric group.
So, if X(G) is a cograph, then G will almost certainly be “lost in
the noise”.

A question

Question
For which graph types X, and for which groups G, is it true that the
automorphism group of the cokernel of X(G) is equal to the
automorphism group of G?
As noted, this is the case for the power graph of M11.

Infinite groups

There are a number of results about graphs in the hierarchy
defined on infinite groups. I begin with one of the best known.
This theorem was proved by Bernhard Neumann, answering a
question of Paul Erdős.

Theorem
Let G be a group, and suppose that Com(G) contains no infinite
independent set. Then there is a finite upper bound on the size of
independent sets in Com(G).
Neumann formulated the result in terms of cliques in the
non-commuting graph.
I will sketch part of the proof, since is is a nice mixture of group
theory and graph theory.

Proof.
The proof consists of showing that the hypothesis implies that
Z(G) has finite index in G. Now two elements in the same coset
of Z(G) commute, so an independent set cannot be larger than
|G : Z(G)|.
The assertion follows by group-theoretic argument from the
following claim:

Every conjugacy class in G is finite.

For if not, let g lie in an infinite conjugacy class, and let S be an
infinite set such that the elements s−1gs are all distinct for some
x. By Ramsey’s Theorem, this set contains an infinite clique U.
But if u, v ∈ U, then

[xu, xv] = u−1x−1v−1x−1xuxv = (u−1xu)−1(v−1xv) 6= 1,

since u and v commute. But then xU is an infinite independent
set, a contradiction.



Other graphs

If G is an infinite group for which Pow(G) or EPow(G) has no
infinite independent set, then of course Com(G) has no infinite
independent set, and so Z(G) has finite index in G.
However, the analogue of Neumann’s Theorem fails.
Consider first the group Cp∞ , which can be defined either as the
group of p-power roots of unity in C, or as the group of
rationals with p-power denominator in Q modulo Z. This
group has the property that its subgroups are finite cyclic
groups of p-power order, one for each power of p. So the power
graph is complete.
Incidentally, this shows how far the power graph is from
determining the group in the infinite case: indeed, we cannot
even determine the prime p from the power graph.
The directed power graph does determine the prime, since the
set of elements immediately above the identity in the preorder
has cardinality p− 1.

Now consider the group G = Cp∞ × Cp∞ . It is not hard to show
that the power graph of G contains no infinite independent set.
However, if ai and bi denote elements of order pi in the two
factors, then the set

{(a0, bn), (a1, bn−1), . . . , (an, b0)}

is an independent set of size n + 1, for any n.
Nevertheless, something can be proved:

Theorem
Let G be an infinite group. Then the following are equivalent:
I Pow(G) has no infinite coclique;
I Z(G) has finite index in G and is a direct sum of finitely many

p-torsion subgroups of finite rank, for primes p.

So G is locally finite, a result of Shitov.

For the enhanced power graph, Abdollahi and Hassanabadi
proved that the analogue of Neumann’s Theorem does hold:

Theorem
Let G be an infinite group. Then the following are equivalent:
I EPow(G) has no infinite coclique;
I there is a finite upper bound for the size of cocliques in

EPow(G);
I ZEPow(G) has finite index in G.

Recall that ZEPow(G) is a subgroup of G, called the cyclicizer. It
is the set of elements x ∈ G such that, for all y ∈ G, 〈x, y〉 is
cyclic.

Cliques and colourings

The following striking result holds for the power graph of an
infinite group:

Theorem
The power graph of an infinite group has clique number and
chromatic number at most countable.
Of course there is no such result for the commuting graph,
since there are arbitrarily large abelian groups. We have the
following result for the case where the numbers are finite.

Theorem
For an infinite group G, the following conditions are equivalent:
I Pow(G) has finite clique number;
I Pow(G) has finite chromatic number;
I EPow(G) has finite clique number;
I EPow(G) has finite chromatic number;
I G is a torsion group with finite exponent.

Proof.
The power graph of an infinite cyclic group 〈g〉 contains an
infinite clique {g2n

: n ≥ 0}. So a group satisfying any of the
first four conditions is a torsion group. Now the results are
proved just as for finite groups.

Directing the power graph

We saw that the power graph determines the directed power
graph up to isomorphism in the case of a finite group. This fails
for infinite groups: the groups Cp∞ , for primes p, all have power
graph which is countable and complete, but their directed
power graphs are all different.
But the result does hold for torsion-free groups. Indeed, a
theorem of Zahirović shows clearly the important role played
by Cp∞ :

Theorem
Let G and H be infinite groups with Pow(G) ∼= Pow(H). Suppose
that G has no subgroup K ∼= Cp∞ with the property that, for any
cyclic subgroup L of G, either L ≤ K or L∩ K = {1}. Then
DPow(G) ∼= DPow(H).



Lecture 8
Other worlds

Magmas

Many of our graphs can be defined on structures much more
general than groups. We can’t expect such a rich theory, but
maybe there is something to be said.
I will start with a magma, a set with a binary operation
(without further restriction). (These objects are sometimes
called groupoids, but this term is also used in category theory
for a category with all morphisms invertible, so I will avoid it
here.)
Sometimes I will write the operation as x ◦ y, and sometimes I
will just concatenate, as is usually done for multiplication in a
group.
One can define the commuting graph of an arbitrary magma.
We cannot expect to define, say, the deep commuting graph.
But what about the power graph?

Power-associative magmas

There are several ways to define powers in a magma. For
example, we could set
I x1 = x;
I xn+1 = (xn) ◦ x for n ≥ 1.

But different definitions (for example, xn+1 = x ◦ (xn)) could
give different results. We define a magma to be
power-associative if the value of xn is independent of the
definition. This can be expressed by the equations

(xm) ◦ (xn) = xm+n for n ∈N.

Now in any magma we could define the directed power graph
by the rule that a→ b if b = an for some n ∈N, and the power
graph by the rule that x ∼ y if either x→ y or y→ x. But this is
not likely to make much sense unless the magma is
power-associative.

Theorem
In a power-associative magma M,
I the directed power graph is a partial preorder;
I the power graph is the comparability graph of a partial order;
I the power graph is perfect.

The proof is immediate.
Now one of our early theorems about groups asserted that if
two groups have isomorphic power graphs, then they have
isomorphic directed power graphs.

Question
What assumptions on a magma are required for this theorem to hold?

Quasigroups and loops

The Cayley table of a magma M of order n is the n× n array
with rows and columns indexed by M, having (x, y) entry x ◦ y.
(Note that some people reserve the term “Cayley table” for
groups, and would call this an “operation table”.)
A magma is a quasigroup if it satisfies the left and right
division laws; that is, for any a and b, each of the equations
x ◦ a = b and a ◦ y = b has a unique solution. A quasigroup is a
loop if it has an identity element.
In terms of the Cayley table, a quasigroup is a magma for
which each element occurs once in each row and once in each
column of the Cayley table (in other words, the Cayley table is
a Latin square). If the quasigroup is a loop, and we order it so
that the identity is the first element, then the first row agrees
with the row of column labels, and the first column agrees with
the column of row labels.

Moufang loops

A group is a loop which satisfies the associative law.
There are two important classes of loops which satisfy a
relaxation of the associative law, and so are more general than
groups: Moufang loops and Bol loops. I will treat Moufang
loops here.
A Moufang loop is a loop satisfying the identity

z(x(zy)) = ((zx)z)y

(or any one of three equivalent identities).

Theorem
In a Moufang loop M,
I if x(yz) = (xy)z, then the subloop generated by x, y, z satisfies

the associative law;
I x(xy) = (xx)y, y(xx) = (yx)x, and (xy)x = x(yx);
I any 2-generated subloop is associative.



Arguably, Moufang loops are so close to groups that they may
be expected to have some of the properties of groups.
After proving that the power graph of a group determines the
directed power graph up to isomorphism, I conjectured that the
same holds for Moufang loops.
This has very recently been proved by Nick Britten:

Theorem
If M and N are Mougang loops whose power graphs are isomorphic,
then their directed power graphs are isomorphic.
Here is a sketch of the proof. It follows the corresponding proof
for groups. If only the identity is a dominating vertex, the same
argument works.

In the group case, if the power graph has other dominating
vertices, the group must be cyclic or generalised quaternion. A
generalised quaternion group can be characterised as a group
in which every commutative subgroup is cyclic.
A generalised octonion loop is a non-associative Moufang loop
in which every commutative and associative subloop is cyclic.
A construction due to Chein produces Moufang loops.

Theorem
The following are equivalent for a Moufang loop M:
I M is a generalized octonion loop;
I M is a specific subloop of the unit octonions;
I M is a finite Moufang loop of 2-power exponent with a unique

element of order 2;
I M is produced by Chein’s construction.

Now let M be a Moufang loop whose power graph has a
dominating vertex.
The proof shows that, if the order of M is not a 2-power, then it
must be a cyclic group; if it is a 2-power, then M is cyclic,
generalised quaternion, or generalised octonion, depending on
whether the largest complete subgraph has size |M|, |M|/2 or
|M|/4.

Question
Can anything similar be done for other classes of loops?

There is a body of research on commuting graphs and power
graphs of loops, especially Moufang and Bol loops, which I
cannot describe here.
As far as I am aware, the enhanced power graph of a
power-associative loop has not been studied, although the
definition presents no problems.
It is probably true that the deep commuting graph makes little
sense outside the context of groups.

Semigroups and monoids

The other type of magmas of wide interest is semigroups. A
semigroup is a magma satisfying the associative law
x(yz) = (xy)z. A semigroup with an identity element is a
monoid.
There are various classes of semigroups which resemble groups
to a greater or lesser degree. Perhaps the class which is closest
to groups, and so most likely to give an interesting theory,
consists of inverse semigroups.
An inverse semigroup is a semigroup in which, for each
element x, there is a unique generalised inverse y satisfying
xyx = x and yxy = y. The element y is denoted by x∗.

Random walks

We saw in the first lecture that the random walk on the
commuting graph of a group (with a loop at every vertex) has
limiting distribution which is uniform on conjugacy classes.

Question
Are there any classes of magmas beyond groups for which the limiting
distribution of the random walk on the commuting graph can be
described in terms of the structure of the magma?
Our proof for groups involved the action of the group on itself
by conjugation. This can be extended to inverse semigroups,
where conjugation by a is the map x 7→ a∗xa, where a∗ is the
quasi-inverse of a.
So inverse semigroups might be candidates for the above
question . . .



Rings

Once we move on to structures with two binary operations,
there are more opportunities for defining graphs to reflect the
structure.
Recall that a ring has two operations, addition and
multiplication, written in the usual way: the ring forms an
abelian group with the operation + (the identity and inverse of
x are denoted 0 and −x), while multiplication is associative and
distributive over addition. Important classes of rings are
commutative rings and rings with identity (these refer to the
multiplication).
In what follows, “ring” will mean “commutative ring with
identity”.
I will talk about the zero-divisor graph, though other graphs
such as the unit graph have been considered.

Finite rings

An ideal in a ring R is the kernel of a ring homomorphism.
Thus it is a non-empty subset I closed under addition, with the
property that for any a ∈ I and r ∈ R, we have ar ∈ I.
A ring is local if it has a unique maximal ideal, and semi-local if
it has only finitely many. Clearly a finite ring is semi-local.

Theorem
A finite ring is isomorphic to a direct sum of local rings.
This uses some standard results from ring theory. The radical I
of a finite ring R is nilpotent, and hence R is complete in the
I-adic topology.

The zero-divisor graph

An element a of a ring R is a zero-divisor if a 6= 0 and there
exists b ∈ R with b 6= 0 such that ab = 0.
The zero-divisor graph of R has vertex set the set of
zero-divisors in R, with a and b joined if ab = 0.
For example, in the ring Z/(6) of integers mod 6, the
zero-divisors are 2, 3, 4, and the zero-divisor graph is a 3-vertex
path.
This graph was introduced by Anderson and Livingston in
1999.

Universality

Theorem
Every finite graph is an induced subgraph of the zero-divisor graph of
a finite ring.

Proof.
We use Boolean rings: the elements are all subsets of a set X,
with symmetric difference for addition and intersection for
multiplication. Now ab = 0 if and only if a and b are disjoint. So
if we represent the given graph as an intersection graph, it is
naturally embedded in the zero-divisor graph of a Boolean
ring.
I am grateful to G. Arun Kumar for this proof.

Local rings

In a finite ring, every non-zero element is either a zero-divisor
or invertible. (If multiplication by a is not injective, then a is a
zero-divisor; if it is surjective, then a is a unit.) So in a local
ring, the zero-divisors are the non-zero elements of the
maximal ideal.

Question
Are the zero-divisor graphs of local rings universal (in the previous
sense)?
The answer is negative in one special case.

An ideal of a ring is principal if it is generated by a single
element.

Theorem
If R is a finite local ring whose maximal ideal is principal, then the
zero-divisor graph of R is a threshold graph.

Proof.
Let m generate the maximal ideal. Then every element of R has
the form umi, where u is a unit. There is a minimum i such that
mi = 0, say i = k; then umi is joined to vmj if and only if
i + j ≥ k. So the zero-divisor graph is a threshold graph.
However, not all finite local rings have their maximal ideals
principal, and the zero-divisor graph is not always a threshold
graph. The question above remains unanswered.



I hope you have enough information now to begin tackling
some of the open questions I have mentioned.
Take a look at my paper on this topic in the International Journal
of Group Theory, which you can download from

https://ijgt.ui.ac.ir/article_25608.html

This paper also contains an extensive bibliography.

Please tell me about anything you manage to find!


