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Brauer and Fowler

In 1955, Brauer and Fowler published a paper which, in
retrospect, was the first step on the thousand-mile journey to
the Classification of Finite Simple Groups (CFSG).

I Richard Brauer and K. A. Fowler, On groups of even order,
Ann. Math. 62 (1955), 565–583.



Brauer and Fowler

In 1955, Brauer and Fowler published a paper which, in
retrospect, was the first step on the thousand-mile journey to
the Classification of Finite Simple Groups (CFSG).
I Richard Brauer and K. A. Fowler, On groups of even order,

Ann. Math. 62 (1955), 565–583.



The paper is best known for the following theorem (though
they do not state it explicitly as a theorem):

Theorem
Let H be a finite group. Then there are only finitely many finite
simple groups G containing an involution z such that CG(z) ∼= H.
This immediately suggests the problem of characterising finite
simple groups by the centraliser of an involution. This became
a major constituent of CFSG.
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A graph?

The paper of Brauer and Fowler does not contain the word
“graph”. However, it does contain the following definition.

Let G# = G \ {1}. For g, h ∈ G#, the distance d(g, h) is the
smallest d for which there exist g0, g1, . . . , gd ∈ G# such that
g0 = g, gd = h, and gi−1gi = gigi−1 for i = 1, 2, . . . , d.
This is obviously the distance in the graph with vertex set G#,
in which two vertices are joined by an edge if they commute.
This was the first appearance of what is now known as the
reduced commuting graph of G.
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Here is a simple example of their argument.

Proposition

Let x and y be non-conjugate involutions in a group G. Then
d(x, y) ≤ 2.

Proof.
The subgroup generated by x and y is a dihedral group D2n of
order 2n. Now n must be even, since if it were odd then x and y
would generate Sylow subgroups of 〈x, y〉, and so would be
conjugate, contrary to hypothesis. So D2n contains a central
involution z, which commutes with both x and y.
A simple enough argument, but it shows the blend of group
theory and graph theory you should expect in the remainder of
this course.
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Where are we going?

We have seen the first tentative appearance of the commuting
graph of a finite group.

There are a number of further graphs that have been
considered; some of these already have a large literature. These
include the power graph, enhanced power graph, deep
commuting graph, generating graph, nilpotency graph,
solubility graph, and Engel graph.
My interest will be not so much in the individual graphs, as in
the relations between them. With a little twist, these graphs
form a hierarchy on a given group, with each one contained in
the next. This will focus our attention on two things: common
properties of the graphs, and how they relate; and properties of
further graphs which are formed by differences of the edge sets
of two graphs in the hierarchy.
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Aims

I hope in this course to

I introduce you to an area of algebraic graph theory which I
find fascinating and addictive;

I mention a number of open problems;
I give you some tools to tackle them.

For more details, see my paper “Graphs defined on groups”, to
appear in the International Journal of Group Theory: the doi is

10.22108/ijgt.2021.127679.1681

or (better) get it from

https://ijgt.ui.ac.ir/article 25608.html

or you can find a version on the arXiv, 2102.11177.
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Thanks . . .

I to Ambat Vijayakumar, who invited me to present some of
this material in a couple of seminars in a new series he set
up in Kochi in Kerala, India;

I to Alireza Abdollahi, who saw the preprint and
encouraged me to publish it in the Journal he edits;

I to Scott Harper, who drew the beatiful picture of the
generating graph of A5, for permission to use it on the
poster and title pages;

I to many coauthors, several of whom will be mentioned in
what follows, for collaborations;

I and, of course, to the London Taught Course Centre for the
opportunity to preach about them here.
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Where we are not going

I will not be talking, except in passing, about Cayley graphs.
These are graphs defined on groups, and have a huge theory;
much of algebraic graph theory, and arguably most of
geometric group theory, concerns Cayley graphs (of finite and
infinite groups respectively).

To recall: if S is an inverse-closed subset of G \ {1}, the Cayley
graph Cay(G, S) has vertex set G, with an edge from x to y if
xy−1 ∈ S. (It is slightly different if you like left actions.)
A Cayley graph is a graph whose vertex set is a group G and
which is invariant under right translations by elements of G. It
is not invariant under automorphisms of G except in very
special cases. By contrast, the graphs I am discussing are
invariant under automorphisms of G, because they are
uniquely specified by G, without requiring choosing a
generating set.
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Notation

A talk about groups typically begins “Let G be a group . . . ”,
while a talk about graphs will start “Let G be a graph . . . ”. We
will be talking about both, so we have to make a decision.

I “Graph” is a Greek word, so it makes sense for a graph to
be Γ.

I “Group” is a German word, so perhaps a group should be
G; but I never learned how to do a Gothic G in
handwriting, and probably you didn’t either, so I will use
G for a group.

Otherwise, notation for groups and graphs will be standard. I
will try to explain as I go along, but please ask if you need
clarification!
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Dramatis Personae, 1: the commuting graph

The commuting graph Com(G) of G has vertex set G; vertices g
and h are joined if and only if gh = hg. (This definition would
put a loop at every vertex; we silently suppress these.)

Here are the commuting graphs of the two non-abelian groups
of order 8: D8 = 〈a, b : a4 = 1, b2 = 1, b−1ab = a−1〉 and
Q8 = 〈a, b : a4 = 1, b2 = a2, b−1ab = a−1〉.
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The reduced commuting graph

There are two conventions we need to consider.

I The formal definition would require each vertex to be
joined to itself; that is, the graph has a loop at every vertex.
We will see soon that there is sometimes a good reason for
this. But usually we will silently remove the loops.

I You will recall that Brauer and Fowler removed the
identity from the graph; the identity commutes with
everything and so is joined to all vertices, thus questions
like connectedness (which was important for them) would
become trivial. My default is that all graphs are defined on
the whole group; when we come to consider
connectedness, we first determine which vertices are
joined to all others, and then remove them.

We will denote the commuting graph of G (defined on all of G,
but without loops) by Com(G).
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The “Burnside process”

Another application of the commuting graph comes from a
completely different area.

Theorem (Orbit-counting Lemma)

Let G be a permutation group on a finite set Ω. Then the number of
orbits of G on Ω is equal to the average number of fixed points of
elements of G.
The proof involves constructing a bipartite graph whose vertex
set is G∪Ω, with an edge from g ∈ G to x ∈ Ω if g fixes x. Now
counting the number of edges in the graph in two different
ways gives the result.
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Mark Jerrum showed that more is true. Consider the uniform
random walk on the graph just constructed: at each time step
we move from a vertex to a neighbouring vertex chosen
uniformly at random.

A small adaptation of the proof of the Orbit-counting Lemma
shows that, if we start at a vertex in Ω and take an even
number of steps (so that we are back in Ω), the limiting
distribution is uniform on orbits – that is, the probability of
being at a point x ∈ Ω is inversely proportional to the size of
the orbit containing x.
Jerrum called this random walk the Burnside process, since the
Orbit-counting Lemma was referred to (incorrectly) by early
combinatorial enumerators as “Burnside’s Lemma” (it appears
without attribution in the second edition of Burnside’s book).
Peter Neumann traced it back to Cauchy and Frobenius.
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Conjugacy classes

A group G acts on itself by conjugation. In this case Ω = G, so
we can identify these two sets. Now the group element g fixes x
if and only if gx = xg. So, for this action, the Burnside process is
just a random walk on the commuting graph of G (including
the identity, and with a loop at each vertex).

The importance of this is that some very large groups have
very small conjugacy classes. For an extreme example, the
symmetric group Sn has order n!, but the transpositions form a
conjugacy class of size just n(n− 1)/2. If we are trying to find
all conjugacy classes in a large group, the random walk
“magnifies” such small classes and makes them more visible.
Persi Diaconis has used similar ideas to show that the problem
of describing conjugacy classes in high-dimensional analogues
of Heisenberg groups over finite fields is likely to be hard, since
their commuting graphs are arbitrarily complicated.
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Dramatis Personae, 2: The power graph and its relatives

The power graph of a group G was first defined by Kelarev and
Quinn as a directed graph, with an arc x→ y from x to y
whenever y is a power of x. We denote this directed graph by
DPow(G).

Chakrabarty, Ghosh and Sen introduced the undirected version
Pow(G), in which x and y are joined if x→ y or y→ x (or both)
in the directed power graph.
Although pre-empted by Abdollahi, Aalipour et al. introduced
the enhanced power graph EPow(G), in which x and y are
joined if there exists an element z such that z→ x and z→ y in
the directed power graph.
Note that the edge set of the power graph is contained in that
of the enhanced power graph (hence the name).
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An example: C6
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The pictures show the directed power graph, the power graph,
and the enhanced power graph of the cyclic group C6.

In the directed power graph, if two elements generate the same
cyclic group, then there are arcs in both directions: we
represent this by an undirected edge. To get the power graph,
we simply ignore the remaining edges.
Note that, in Pow(C6), we cannot distinguish between the
identity and the two generators; each is joined to all other
vertices.
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Relations

Theorem
For two groups G and H, the following are equivalent:

1. DPow(G) ∼= DPow(H);
2. Pow(G) ∼= Pow(H);
3. EPow(G) ∼= EPow(H).

The implications 1⇒ 2 and 1⇒ 3 come from the definitions.
2⇒ 1 was proved by Cameron, and 3⇒ 1 by Zahirović.
The implication 2⇒ 1 does not imply that the directed power
graph can be recovered uniquely from the power graph. As we
have seen, in the power graph of C6, the identity and the two
generators are indistinguishable, whereas one is a sink and the
other two sources in the directed power graph. In EPow(C6),
all vertices are indistinguishable.
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The implication 2⇒ 1 does not imply that the directed power
graph can be recovered uniquely from the power graph. As we
have seen, in the power graph of C6, the identity and the two
generators are indistinguishable, whereas one is a sink and the
other two sources in the directed power graph. In EPow(C6),
all vertices are indistinguishable.



Relations

Theorem
For two groups G and H, the following are equivalent:
1. DPow(G) ∼= DPow(H);
2. Pow(G) ∼= Pow(H);
3. EPow(G) ∼= EPow(H).

The implications 1⇒ 2 and 1⇒ 3 come from the definitions.
2⇒ 1 was proved by Cameron, and 3⇒ 1 by Zahirović.
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Also, the three equivalent implications do not imply that
G ∼= H: any two groups of exponent 3 with the same order have
isomorphic power graphs (consisting of a number of triangles
with a common vertex).

However, this does hold in a special case. We cannot
distinguish abelian groups of the same order by their
commuting graphs, but we can by their power graphs:

Theorem
If G and H are abelian groups with Pow(G) ∼= Pow(H), then
G ∼= H.

Proof.
Cameron and Ghosh showed that, from the power graph of G,
we can reconstruct the numbers of elements of each possible
order in G. For abelian groups, this data determines the group
up to isomorphism.



Also, the three equivalent implications do not imply that
G ∼= H: any two groups of exponent 3 with the same order have
isomorphic power graphs (consisting of a number of triangles
with a common vertex).
However, this does hold in a special case. We cannot
distinguish abelian groups of the same order by their
commuting graphs, but we can by their power graphs:

Theorem
If G and H are abelian groups with Pow(G) ∼= Pow(H), then
G ∼= H.

Proof.
Cameron and Ghosh showed that, from the power graph of G,
we can reconstruct the numbers of elements of each possible
order in G. For abelian groups, this data determines the group
up to isomorphism.



Also, the three equivalent implications do not imply that
G ∼= H: any two groups of exponent 3 with the same order have
isomorphic power graphs (consisting of a number of triangles
with a common vertex).
However, this does hold in a special case. We cannot
distinguish abelian groups of the same order by their
commuting graphs, but we can by their power graphs:

Theorem
If G and H are abelian groups with Pow(G) ∼= Pow(H), then
G ∼= H.

Proof.
Cameron and Ghosh showed that, from the power graph of G,
we can reconstruct the numbers of elements of each possible
order in G. For abelian groups, this data determines the group
up to isomorphism.



Also, the three equivalent implications do not imply that
G ∼= H: any two groups of exponent 3 with the same order have
isomorphic power graphs (consisting of a number of triangles
with a common vertex).
However, this does hold in a special case. We cannot
distinguish abelian groups of the same order by their
commuting graphs, but we can by their power graphs:

Theorem
If G and H are abelian groups with Pow(G) ∼= Pow(H), then
G ∼= H.

Proof.
Cameron and Ghosh showed that, from the power graph of G,
we can reconstruct the numbers of elements of each possible
order in G. For abelian groups, this data determines the group
up to isomorphism.



Another view

Proposition

In the group G,
I x and y are joined in the commuting graph if and only if 〈x, y〉 is

abelian.

I x and y are joined in the enhanced power graph if and only if
〈x, y〉 is cyclic.

This suggests an obvious generalisation: choose your favourite
family of groups, and join x to y if and only if 〈x, y〉 belongs to
that family.
In particular, x and y are joined in the nilpotency graph of G if
〈x, y〉 is nilpotent; and are joined in the solubility graph of G if
〈x, y〉 is soluble.
More on these later.
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The generating graph

Instead, we follow a different take on this idea. The generating
graph Gen(G) of G has vertex set G, with vertices x, y joined if
〈x, y〉 = G. Clearly it is a null graph if G cannot be generated by
two elements; but we know from CFSG that all finite simple
groups can be generated by two elements, so there are
interesting examples to consider.

The generating graph for many interesting groups is fairly
dense, as the following result of Burness, Guralnick and Harper
shows. We say that a graph has spread k if any k vertices have a
common neighbour. Thus, “spread 1” means “no isolated
vertices, while “spread 2” means that any two vertices are
joined by a path of length 2 (so the diameter is at most 2).
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The reduced generating graph is the generating graph with the
identity removed.

Theorem
For a finite group G, the following are equivalent:
I Gen(G) has spread 1;
I Gen(G) has spread 2;
I every proper quotient of G is cyclic.

So for example every non-abelian finite simple group satisfies
these conditions.
For reasons which will become clear, I will talk about the
non-generating graph NGen(G), the complement of the
generating graph. This also turns out to be connected with
small diameter for non-abelian simple G (if the identity is
removed).
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The deep commuting graph

This graph is a bit different from the others, requiring more
serious group theory for its definition (by Cameron and
Kuzma).

Let G be a finite group. A central extension of G is a group H
with a normal subgroup Z contained in the centre of H such
that H/Z ∼= G. We regard the epimorphism from H to G as part
of the structure of the extension, and call Z the kernel. So we
can talk about the inverse images of an element of G in H.
Now the deep commuting graph DCom(G) of G is the graph
with vertex set G, in which x and y are joined if and only if their
inverse images in every central extension of G commute.
So it is not obvious that the definition makes sense. But we will
see that it is enough to consider one central extension.
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Schur covers and Schur multiplier

A central extension H of G with kernel Z is a stem extension of
G if Z ≤ Z(H) ∩H′, where H′ is the derived group or
commutator subgroup of H.

Schur showed the following:

Theorem
Let G be a finite group. Then there is a stem extension H of G which
is of maximal order. Moreover, in any two stem extensions of
maximal order, the kernels are isomorphic.
The stem extensions of maximal order are called Schur covers
of G, and the kernel is the Schur multiplier of G.
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The Schur multiplier

The Schur multiplier occurs in many other disguises. For
example:

I It is the second homology group of G over the integers,
H2(G, Z).

I It is the second cohomology from group of G over the
multiplicative group of complex numbers, H2(G, C×).

I If we have a presentation of G as F/R, where F is a free
group, then the Schur multiplier is (R∩ F′)/[R, F].
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The deep commuting graph

Theorem
Let H be a Schur cover of G. Then two elements of G have the
property that their inverse images in every central extension of G
commute if and only if their inverse images in H commute.

Thus the deep commuting graph of G is well-defined; it is
obtained by taking the commuting graph of a Schur cover of G
and projecting it onto G.
As a corollary we see that any two Schur covers of G have
isomorphic commuting graphs. This can be proved directly
using the notion of isoclinism.
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An example

The Klein group V4 = C2 × C2 has two Schur covers, the
dihedral and quaternion groups of order 8 (so that its Schur
multiplier is C2). Here is the commuting graph of these groups
again:
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We see that the deep commuting graph of V4 is the star K1,3,
even though its commuting graph is the complete graph K4.
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Invariance under automorphisms

For most of the graph types we have defined (the power graph,
enhanced power graph, commuting graph, and generating
graph), it is clear that any automorphism of the group G
induced an automorphism of the corresponding graph on G.

This is not immediately clear for the deep commuting graph,
but it is true in this case. Once we know that our original
definition (two vertices joined if their inverse images in every
central extension commute) is a good definition, it is clear that
the graph is preserved by automorphisms.
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Coming up next . . .

In the next lecture, I will consider the graphs we have looked at
so far (the power graph, enhanced power graph, deep
commuting graph, commuting graph, and non-generating
graph), and begin to consider the relations between them.

As you will see, these graphs form a hierarchy, which can be
augmented with the null graph at the bottom and the complete
graph at the top.
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