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Summary

Here is a very brief summary of the lectures.

I Lecture 1: Some of the players: Commuting graph, power
graph, etc.

I Lecture 2: The hierarchy: the graphs, and when are two of
them equal?

I Lecture 3: Cographs and twin reduction: some graph theory
I Lecture 4: The Gruenberg–Kegel graph: a small graph with

big influence
I Lecture 5: Connectedness of reduced graphs in the hierarchy
I Lecture 6: Universality of graphs in the hierarchy
I Lecture 7: Onward and upward: graphs above the hierarchy
I Lecture 8: Other worlds: loops, semigroups, rings
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The hierarchy of graphs

The joining rules for elements x and y of a group G:

I null graph: never
I power graph Pow(G): one is a power of the other
I enhanced power graph EPow(G): both are powers of an

element z; equivalently 〈x, y〉 is cyclic
I deep commuting graph DCom(G): the inverse images of x

and y commute in every central extension of G
I commuting graph Com(G): xy = yx; equivalently 〈x, y〉 is

abelian
I non-generating graph NGen(G): 〈x, y〉 6= G
I complete graph: always

I will call this the graph hierarchy of G.
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Inclusions

Proposition

With the possible exception of Com(G) and NGen(G), the edge set
of each graph in the hierarchy is contained in that of the next. This
holds for Com(G) and NGen(G) if and only if G is either
non-abelian or not 2-generated.

Proof.
Everything is clear except perhaps the position of the deep
commuting graph. It is clear that edges of the deep commuting
graph are edges of the commuting graph, since G is a central
extension of itself.

Suppose that x and y are joined in the enhanced power graph,
so that 〈x, y〉 = 〈z〉 for some z. Let H be a central extension of G,
with H/Z ∼= G, and let a, b, c be inverse images of x, y, z in H.
Then 〈Z, a, b〉 = 〈Z, c〉 is abelian, since Z is central; so a and b
commute.
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When does equality hold?

A natural question that arises is: for which groups G is a
consecutive pair of graphs in the hierarchy on G equal?

At the top and bottom, this is easy:
I Pow(G) is null if and only if G = {1}. For every non-trivial

element is joined to 1 in the power graph.
I NGen(G) is complete if and only if G is not 2-generated.
I Com(G) = NGen(G) if and only if G is a minimal

non-abelian group.
The minimal non-abelian groups were determined by Miller
and Moreno in 1904. (I give their result on the next slide.) They
are all 2-generated. So, if G is not minimal non-abelian, then it
contains two non-commuting elements which generate a
proper subgroup.
For the other gaps, I ignore the deep commuting graph at first,
and come back to it later.
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Minimal non-abelian groups

Let G be a minimal non-abelian group. There are two
possibilities:

I |G| is a power of a prime p, and G = 〈a, b〉, where
Z(G) = 〈ap, bp, [a, b]〉, and G′ = 〈[a, b]〉 has order p.
Moreover, either p = 2 and G is the quaternion group of
order 8, or 〈ap〉 ∩ 〈bp〉 = {1}.

I |G| is divisible by two primes p and q; moreover, G is a
semidirect product of an elementary abelian p-group N by
a cyclic q-group 〈b〉, where b induces an automorphism of
order q which is irreducible on N.

As noted, it is important for us that minimal non-abelian
groups are 2-generated.
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Frobenius and 2-Frobenius groups

The group G is a Frobenius group if it has a proper subgroup H
(called a Frobenius complement) with the property that
H ∩Hg = {1} for all g ∈ G \H. The symmetric group S3 is an
example.

Frobenius showed that, if N is the set of elements lying in no
conjugate of H, together with the identity, then N is a normal
subgroup of G, called the Frobenius kernel. Moreover,
Thompson showed that the Frobenius kernel is nilpotent, and
Zassenhaus determined the structures of Frobenius
complements.
The group G is a 2-Frobenius group if it has a chain of normal
subgroups {1}C N C M C G such that
I M is a Frobenius group with Frobenius kernel N;
I G/N is a Frobenius group with Frobenius kernel M/N.

The symmetric group S4 is an example.
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Power graph and enhanced power graph

Proposition

Let G be a finite group. Then the following are equivalent:

I Pow(G) = EPow(G);
I G contains no subgroup Cp × Cq for distinct primes p, q;
I every element of G has prime power order.

Proof.
Commuting elements of distinct prime orders p and q are
joined in the enhanced power graph but not in the power
graph. Conversely, if x and y are joined in the enhanced power
graph but not in the power graph, then 〈x, y〉 is cyclic but not of
prime power order, so it contains an element of order pq for
distinct primes p, q.
Groups with the last property are called EPPO groups.
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Classification of EPPO groups

If G is an EPPO group, then the centraliser of an involution in G
must be a 2-group. Back in the last century, groups with this
property were studied under the name CIT groups by Suzuki,
who classified the simple CIT groups:

I PSL(2, q) for q a power of 2;
I the Suzuki group Sz(q), for q an odd power of 2;
I PSL(2, q), where q is a Fermat or Mersenne prime or q = 9;
I PSL(3, 4).

The non-simple case took longer; following the work of a
number of mathematicians, Natalia Maslova and I completed
the classification of EPPO groups in a paper now on the arXiv.
This is given on the next slide, where π(G) denotes the set of
prime divisors of |G|.
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Theorem
An EPPO group G satisfies one of the following:

I |π(G)| = 1 and G is a p-group.

I |π(G)| = 2 and G is a solvable Frobenius or 2-Frobenius group.

I |π(G)| = 3 and G ∈ {A6, PSL2(7), PSL2(17), M10}.
I |π(G)| = 3, G/O2(G) is PSL2(2n) for n ∈ {2, 3} and if

O2(G) 6= {1}, then O2(G) is the direct product of minimal normal
subgroups of G, each of which is of order 22n and as a
G/O2(G)-module is isomorphic to the natural GF(2n)SL(2n)-module.

I |π(G)| = 4 and G ∼= PSL3(4).

I |π(G)| = 4, G/O2(G) is Sz(2n) for n ∈ {3, 5}, and if O2(G) 6= {1},
then O2(G) is the direct product of minimal normal subgroups of G,
each of which is of order 24n and as a G/O2(G)-module is isomorphic
to the natural GF(2n) Sz(2n)-module of dimension 4.
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The Gruenberg–Kegel graph appears

The Gruenberg–Kegel graph of a finite group G is the graph
whose vertex set is π(G), with an edge from p to q if and only if
G contains an element of order pq.

I will have a lot more to say about this graph later in the course,
but for now let us just note the following:

Proposition

The finite group G is an EPPO group if and only if its
Gruenberg–Kegel graph has no edges.
An important ingredient of the classification of EPPO groups is
the unpublished theorem of Gruenberg and Kegel, a structure
theorem about groups whose Gruenberg–Kegel graph is not
connected. More on this later.
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Enhanced power graph and commuting graph

Proposition

Let G be a finite group. Then the following are equivalent:

I EPow(G) = Com(G);
I G contains no subgroup Cp × Cp for prime p;
I the Sylow subgroups of G are cyclic or generalised quaternion

groups.

Proof.
The equivalence of the first two conditions is clear since a
non-cyclic abelian group contains a subgroup Cp × Cp.
The equivalence of the second and third follows from a
theorem of Burnside asserting that groups of p-power order
containing no Cp × Cp subgroup must be cyclic or generalised
quaternion.
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Classification

It is possible to determine completely the groups with cyclic or
generalised quaternion Sylow subgroups.

If all Sylow subgroups are cyclic, then G is metacyclic. For let
F(G) be the Fitting subgroup of G, the largest normal nilpotent
subgroup of G. Then F(G) is a direct product of cyclic groups of
coprime orders, so is cyclic. Since it contains its centraliser,
G/F(G) embeds into Aut(F(G), which is abelian with cyclic
Sylow subgroups and so is cyclic.
If p and q are primes such that q | p− 1, the non-abelian group
of order pq (the semidirect product of Cp by Cq) is an example.
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Now suppose that the Sylow 2-subgroups of G are generalised
quaternion and the odd Sylow subgroups cyclic.

Let O(G) be the largest normal subgroup of G of odd order.
Then by the previous analysis, O(G) is metacyclic. Put
Ḡ = G/O(G).
By Glauberman’s Z∗-theorem, Ḡ has a unique central subgroup
of order 2, generated by z say. Then Ḡ/〈z〉 has dihedral Sylow
2-subgroups, and so is determined by the Gorenstein–Walter
theorem; it must be PSL(2, p) or PGL(2, p), for an odd prime p.
There is a unique group Ḡ for each choice of Ḡ/〈z〉. Indeed, a
cohomological argument due to Glauberman shows that any
group with dihedral Sylow 2-subgroups has a unique extension
containing only one involution (and so having generalised
quaternion Sylow 2-subgroups).
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The deep commuting graph

We deferred discussion of this graph, which lies between the
enhanced power graph and the commuting graph in the
hierarchy. For which groups is it equal to one or other of these?

Theorem
Let G be a finite group. Then DCom(G) = EPow(G) if and only if
G has the following property: let H be a Schur cover of G, with
H/Z = G. Then for any subgroup A of G, with B the corresponding
subgroup of H (so Z 6 B and B/Z = A), if B is abelian, then A is
cyclic.

Proof.
Just a matter of checking the definitions: 〈x, y〉 is cyclic if x and
y are joined in EPow(G), and their inverse images in a Schur
cover generate an abelian group if and only if x and y are joined
in DCom(G).
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An example

Suppose that G is a group and p a prime such that G has a
subgroup H ∼= Cp × Cp, and p does not divide the order of the
Schur multiplier M(G). Then the lift of H to a Schur cover splits
over the Schur multiplier, and hence is abelian; but H is not
cyclic. So DCom(G) 6= EPow(G).

For example, the Schur multiplier of the alternating group An
for n ≥ 8 is cyclic of order 2, and this group contains C3 × C3.
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The Bogomolov multiplier

For the other equality, we need another piece of technology.

Recall that
I a stem extension of G is a group H with a subgroup

Z ≤ Z(H) ∩H′ such that H/Z ∼= G;
I a Schur cover is a largest stem extension, and the Schur

multiplier of G is the subgroup Z (it is determined
uniquely by G, although H may not be).

The Schur multiplier of G is denoted by M(G).
Let H be a stem extension of G, and let a, b be the inverse
images in H of x, y ∈ G. Clearly, if a and b commute, then so do
x and y. If the converse is true, then we say that the extension is
commutativity-preserving, or CP for short.
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images in H of x, y ∈ G. Clearly, if a and b commute, then so do
x and y. If the converse is true, then we say that the extension is
commutativity-preserving, or CP for short.



Theorem
Given a finite group G, there is a unique finite abelian group Z such
that any CP stem extension of G of largest possible order has kernel Z.
The subgroup Z is called the Bogomolov multiplier of G,
denoted by B0(G).

It has various descriptions. For example, one can define a
nonabelian exterior square G∧G, generated by symbols x∧ y
for x, y ∈ G subject to the relations

(xy)∧ z = (xy∧ zy)(y∧ z), x∧ (yz) = (x∧ z)(xz∧ yz), x∧ x = 1.

Then x∧ y 7→ [x, y] is a surjective homomorphism from G∧G
to G′ whose kernel is M(G). If we set
M0(G) = 〈x∧ y | [x, y] = 1〉; then B0(G) ∼= M(G)/M0(G).
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The Bogomolov multiplier arose in connection with the work of
Artin and Mumford on obstructions to Noether’s conjecture on
the pure transcendence of the field of invariants. Fortunately
we do not need this background.

More practially, the GAP package HAP, written by Graham Ellis,
will compute the Bogomolov multiplier, as well as the Schur
multiplier, of a group.

Theorem
Let G be a finite group. Then DCom(G) = Com(G) if and only if
B0(G) = M(G).
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Simple groups

Kunyavskiı̆ proved a conjecture of Bogomolov by showing that
the Bogomolov multiplier of every finite non-abelian simple
group is trivial.

The alternating group An for n ≥ 8 has Schur multiplier of
order 2. So for these groups, the enhanced power graph, deep
commuting graph, and commuting graph are all unequal.
However, the Schur multiplier of M11 is trivial; so the
commuting graph and deep commuting graph of this group are
equal.



Simple groups

Kunyavskiı̆ proved a conjecture of Bogomolov by showing that
the Bogomolov multiplier of every finite non-abelian simple
group is trivial.
The alternating group An for n ≥ 8 has Schur multiplier of
order 2. So for these groups, the enhanced power graph, deep
commuting graph, and commuting graph are all unequal.

However, the Schur multiplier of M11 is trivial; so the
commuting graph and deep commuting graph of this group are
equal.



Simple groups

Kunyavskiı̆ proved a conjecture of Bogomolov by showing that
the Bogomolov multiplier of every finite non-abelian simple
group is trivial.
The alternating group An for n ≥ 8 has Schur multiplier of
order 2. So for these groups, the enhanced power graph, deep
commuting graph, and commuting graph are all unequal.
However, the Schur multiplier of M11 is trivial; so the
commuting graph and deep commuting graph of this group are
equal.



Further examples

It is possible for the Schur and Bogomolov multipliers to be
equal when they are both non-trivial. An example is a certain
group of order 64 (this is SmallGroup(64,182) in the GAP
library).

Dihedral groups of order 2n ≥ 8 have the property that their
deep commuting graphs are equal to their enhanced power
graphs, but not equal to their commuting graphs.
It has to be admitted that the situation is not perfectly
understood . . .
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Differences

Now that we have some kind of description of groups for
which two graphs in the hierarchy coincide, a natural question
is: if G is a group for which two of these graphs are unequal,
what can be said about the graph whose edge set is the
difference of the edge sets of the two graphs?

Not very much is known. There are a couple of trivial
observations:
I The difference between Pow(G) and the null graph is just

Pow(G), which has an extensive literature.
I The difference between the complete graph and the

non-generating graph is, of course, the generating graph
Gen(G), which also has an extensive literature.

But there are many more differences that could be explored.
Some of these will arise later in this course.



Differences

Now that we have some kind of description of groups for
which two graphs in the hierarchy coincide, a natural question
is: if G is a group for which two of these graphs are unequal,
what can be said about the graph whose edge set is the
difference of the edge sets of the two graphs?
Not very much is known. There are a couple of trivial
observations:

I The difference between Pow(G) and the null graph is just
Pow(G), which has an extensive literature.

I The difference between the complete graph and the
non-generating graph is, of course, the generating graph
Gen(G), which also has an extensive literature.

But there are many more differences that could be explored.
Some of these will arise later in this course.



Differences

Now that we have some kind of description of groups for
which two graphs in the hierarchy coincide, a natural question
is: if G is a group for which two of these graphs are unequal,
what can be said about the graph whose edge set is the
difference of the edge sets of the two graphs?
Not very much is known. There are a couple of trivial
observations:
I The difference between Pow(G) and the null graph is just

Pow(G), which has an extensive literature.

I The difference between the complete graph and the
non-generating graph is, of course, the generating graph
Gen(G), which also has an extensive literature.

But there are many more differences that could be explored.
Some of these will arise later in this course.



Differences

Now that we have some kind of description of groups for
which two graphs in the hierarchy coincide, a natural question
is: if G is a group for which two of these graphs are unequal,
what can be said about the graph whose edge set is the
difference of the edge sets of the two graphs?
Not very much is known. There are a couple of trivial
observations:
I The difference between Pow(G) and the null graph is just

Pow(G), which has an extensive literature.
I The difference between the complete graph and the

non-generating graph is, of course, the generating graph
Gen(G), which also has an extensive literature.

But there are many more differences that could be explored.
Some of these will arise later in this course.



Differences

Now that we have some kind of description of groups for
which two graphs in the hierarchy coincide, a natural question
is: if G is a group for which two of these graphs are unequal,
what can be said about the graph whose edge set is the
difference of the edge sets of the two graphs?
Not very much is known. There are a couple of trivial
observations:
I The difference between Pow(G) and the null graph is just

Pow(G), which has an extensive literature.
I The difference between the complete graph and the

non-generating graph is, of course, the generating graph
Gen(G), which also has an extensive literature.

But there are many more differences that could be explored.
Some of these will arise later in this course.



The non-commuting, non-generating graph

One of these difference graphs which has been studied in some
detail is the difference between the non-generating graph and
the commuting graph (which, we recall, is non-null if and only
if G is not a minimal non-abelian group).

This is considered by Saul Freedman in his PhD thesis,
currently nearing completion. He concentrates mainly on
questions of connectedness and of diameter of connected
components.
Since this material is not yet available, I will not discuss it here.
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An observation

The power graph, enhanced power graph, deep commuting
graph, and commuting graph have the following property:

Let X be one of the above graph types, and G a finite
group. If H is a subgroup of G, then the induced sub-
graph of X(G) on H is X(H).

But the non-generating graph behaves very differently:
Let G be a finite group. If H is a proper subgraph of
G, then the induced subgraph of NGen(G) on H is a
complete graph.

For no two elements of H can generate G.
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Coming up next . . .

The next lecture will turn to graph theory. I will discuss
cographs (a class of graphs with very nice algorithmic
properties) and twin reduction (a simplification process closely
connected to cographs).

For example, the automorphism group of a cograph can be
built from the trivial group by the operations “direct product”
and “wreath product with a symmetric group”.
It turns out that twin reduction is always possible for the
groups in the hierarchy, and it is a very interesting question to
decide when one of these graphs is actually a cograph.
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