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Graph theory definitions

I have used some of these ideas informally already: here are
definitions.

Our graphs are always simple (without loops and multiple
edges).
A walk from v to w is a sequence (v0, v1, . . . , vr) of vertices such
that v0 = v, vr = w, and vi−1 is joined to vi for i = 1, . . . , r. It is a
path if the sequence has no repeated vertices. (If there is a walk
from v to w then there is a path.) A graph is connected if there
is a path between any two of its vertices. In a connected graph,
the distance from v to w is the length (one less than the number
of vertices) of the smallest path joining them, and the diameter
of the graph is the maximum distance between two vertices.
The complement of a graph Γ is the graph Γc with the same
vertex set whose edges are those pairs of vertices which are not
edges in Γ.
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Subgraphs

Let Γ be a graph. We denote its vertex set by V(Γ) and its edge
set by E(Γ).

A subgraph of Γ has as vertex and edge sets subsets of those of
Γ, with the proviso that if an edge belongs to the subgraph then
so do both of its vertices.
Two kinds of subgraphs are particularly important:
I For an induced subgraph, we take a subset W of V(Γ) as

vertex set, and all edges of Γ with both vertices in W as the
edge set.

I For a spanning subgraph, the vertex set is all of V(Γ), and
the edge set is a subset of E(Γ).

Note that, in our graph hierarchy on a group G, each graph is a
spanning subgraph of the next.
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Cographs

Cographs form a class of graphs with many nice properties.
They have an inductive structure which allows many hard
algorithmic problems to be solved very easily on cographs.

To motivate the definition, note that the complement of a
disconnected graph is connected. For if Γ is disconnected, then
the vertex set can be split into two non-empty parts A and B
with no edges between them. Now in Γc, every vertex of A is
joined to every vertex of B; so any two vertices in A have a
common neighbour in B, and vice versa.
The converse is false, as the graph P4 (the four-vertex path)
shows:
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Cographs

The next theorem describes graphs for which the converse of
the above holds “inductively”.

Theorem
For a finite graph Γ, the following conditions are equivalent:

1. Γ has no induced subgraph isomorphic to P4;
2. for every induced subgraph ∆ of Γ with more than one vertex,

either ∆ or its complement ∆c is disconnected;
3. Γ can be built from the trivial graph by the operations “disjoint

union” and “complement”.

A graph satisfying these three conditions is called a cograph.
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Proof
1⇒ 2: Suppose that Γ has no induced P4 but both Γ and its
complement are connected, and let Γ be minimal with this
property. Then, given any vertex v, if we remove v (that is, take
the induced subgraph on V(Γ) \ {v}), either the graph or its
complement is disconnected, without loss the former.

I claim that v is joined to all other vertices of Γ. For we can
partition V(Γ) into two parts A and B so that every path
between them passes through Γ. If some vertex u of A were not
joined to v, we could take a path of length at least 2 from u to v
and an edge from v to a vertex of B, giving an induced path of
length 3, contrary to assumption. Similarly for B.
But now v is an isolated vertex in Γc, which is therefore
disconnected.
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2⇒ 3: By repeatedly splitting into connected components and
taking the complement, a graph satisfying 2 is reduced to
1-vertex graphs. Reversing the splitting procedure gives the
required construction.

3⇒ 1: It is clear that P4 cannot be built in this way: if a graph
contains P4, then so does its complement; and if a graph
contains P4, then at least one of its connected components
does.

We see that cographs form the smallest class of graphs
containing the 1-vertex graph and closed under complement
and disjoint union.
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Cographs have been rediscovered a number of times, and have
received several different names in the literature, such as
“complement-reducible graphs”, “hereditary Dacey graphs”,
and “N-free graphs”.

Here is some data. Almost all groups of order up to n are
2-groups. The table gives the number of groups, and the
number for whom a graph in the hierarchy is a cograph.

Order Groups Pow EPow Com NGen
1 1 1 1 1 1
2 1 1 1 1 1
4 2 2 2 2 2
8 5 5 5 5 5

16 14 14 14 14 14
32 51 51 51 44 51
64 267 267 267 152 267
128 2328 2328 2328 789 2328
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And here are some results for small non-abelian simple groups:

G |G| Pow EPow DCom Com NGen
A5 60 Y Y Y Y N

PSL(2, 7) 168 Y Y Y N N
A6 360 Y Y Y N N

PSL(2, 8) 504 Y Y Y Y N
PSL(2, 11) 660 Y Y Y N N
PSL(2, 13) 1092 Y Y Y N N
PSL(2, 17) 2448 Y Y Y N N

A7 2520 N N N N N
PSL(2, 19) 3420 Y Y Y N N
PSL(2, 16) 4080 Y Y Y Y N
PSL(3, 3) 5616 N N N N N
PSU(3, 3) 6048 N N N N N
PSL(2, 23) 6072 N Y Y N N
PSL(2, 25) 7800 N Y Y N N

M11 7920 N N N N N
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Some explanations

We have seen that, for groups of prime power order, the power
graph and enhanced power graph are equal; we will see later
that the power graph is a cograph.

Theorem
I If G has prime power order, then NGen(G) is a cograph.
I If G is a non-abelian finite simple group, then NGen(G) is not a

cograph.

Proof.
For the first, if G is not 2-generated, then NGen(G) is complete;
if it is 2-generated, then by the Burnside Basis Theorem, any
subgroup of index p induces a complete graph, and any two of
these complete graphs intersect in the Frattini subgroup Φ(G)
(with index p2); all other pairs generate.
For the second, we will see later that the generating graph of a
finite simple group and its complement are both connected.
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The power graph of a p-group is a cograph

Cameron, Manna and Mehatari showed something a bit
stronger: the power graph of a p-group has no induced P4 or
C4.

Suppose first that (x, y, z) is an induced P3. In DPow(G), we
cannot have x→ y→ z or z→ y→ x, since either would imply
x ∼ z in Pow(G). Also we cannot have y→ x and y→ z, since
then x, z ∈ 〈y〉, but the power graph of a cyclic p-group is a
complete graph. So we must have x→ y and z→ y.
Now suppose that (x, y, z, w) is a path of length 4, with x 6∼ z
and y 6∼ w. Then we have x→ y and z→ y, and also y→ z and
w→ z; but these imply x→ z, a contradiction. So both induced
P4 and induced C4 are excluded.
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The power graph of a nilpotent group

In the same paper, the following theorem is proved:

Theorem
Let G be a nilpotent group whose power graph is a cograph. Then
either G is a p-group for some prime p, or G is cyclic of order pq,
where p and q are distinct primes.
This theorem is more useful than it appears, since it restricts the
possible nilpotent subgroups of an arbitrary group whose
power graph is a cograph.
We will examine the groups PSL(2, q) on the next slide. Here q
is a prime power. If q is a power of 2, let {l, m} = {q− 1, q + 1};
if q is odd, let {l, m} = {(q− 1)/2, (q + 1)/2}. Note that
PSL(2, q) has maximal cyclic subgroups of orders l and m.
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Proposition

With the notation just introduced, Pow(PSL(2, q)) is a cograph if
and only if each of l and m is either a prime power or the product of
two distinct primes.

Deciding which prime powers have this property is a
number-theoretic property, and probably rather a hard one.
The numbers d ≤ 200 for which q = 2d has the above property
are 1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 31, 61, 101, 127, 167, 199.
For example, 211 − 1 = 23 · 89, while 211 + 1 = 3 · 683.
The odd prime powers up to 500 with the property are 3, 5, 7, 9,
11, 13, 17, 19, 27, 29, 31, 43, 53, 67, 163, 173, 243, 257, 283, 317.

Question
Are there infinitely many prime powers q for which the power graph
of PSL(2, q) is a cograph?
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Twins

Two vertices v and w in a graph Γ are called twins if they have
the same neighbourhood (except possibly for one another).

If we denote by N(v) the set of vertices joined to v, and
N̄(v) = {v} ∪N(v), then we call v and w open twins if
N(v) = N(w), and closed twins if N̄(v) = N̄(w).
A vertex cannot have both a closed and an open twin. For
suppose that u and v are closed twins, and v and w are open
twins. Then u and w are not joined (since u’s twin v is not
joined to w) and also joined (since w’s twin v is joined to u), a
contradiction.
Thus, being twins in a graph is an equivalence relation.
Note that interchanging twins (while fixing all other vertices) is
a graph automorphism; so the automorphism group of the
graph contains a normal subgroup which is the direct product
of symmetric groups on the twin classes.
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Twins in the hierarchy

Proposition

If X denotes any graph type in the hierarchy, and G is any non-trivial
finite group, then the twin relation on X(G) is non-trivial.

Proof.
It is easily checked that two vertices which generate the same
cyclic subgroup are closed twins in each of the graphs save
possibly the non-generating graph (if G is cyclic). So (excluding
this case) we are done unless G has exponent 2. In this case,
X(G) is a star (if X is the power graph, enhanced power graph,
or deep commuting graph) or a complete graph (in the other
two cases).

Cyclic groups are easily dealt with.
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Twin reduction

If two vertices are twins, then we may identify them. This
process is known as twin reduction, and it can be iterated.

Some interesting properties of a graph are preserved by twin
reduction. For example, if F is a graph with trivial twin
relation, then twin reduction preserves the property “no
induced subgraph isomorphic to F”.

Theorem
Given a finite graph Γ, apply twin reduction until no pairs of twins
remain. The result is (up to isomorphism) independent of the way the
twin reduction is carried out.
The resulting graph is called the cokernel of Γ.
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Proof.
The proof is by induction on the number of steps.

If the first step in two sequences of twin reduction involve the
same or intersecting pairs of twins, then after one step the
graphs are isomorphic, and induction gives the result.
If the first step involves disjoint pairs, then consider the graph
∆ obtained by applying both of these identifications to Γ. (Note
that the two identifications commute.) By induction each of the
original sequences gives the same result as a sequence starting
with ∆.
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Cographs and twin reduction

Theorem
A finite graph is a cograph if and only if its cokernel is the 1-vertex
graph.

Proof.
As we noted, twin reduction cannot create or destroy an
induced P4, so it preserves the property of being a cograph. So
we need to show that any cograph with more than one vertex
contains a pair of twins.
If Γ is null, this is clear. If Γ is disconnected but not null, then
by induction there is a pair of twins in a non-trivial connected
component. If Γ is connected, then its complement is
disconnected, and so contains a pair of twins; but the property
of being twins is preserved by complementation.
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Finite simple groups

Here is the earlier table with the numbers of vertices in the
cokernel.

G |G| Pow EPow DCom Com NGen
A5 60 1 1 1 1 32

PSL(2, 7) 168 1 1 1 44 79
A6 360 1 1 1 92 167

PSL(2, 8) 504 1 1 1 1 128
PSL(2, 11) 660 1 1 1 112 244
PSL(2, 13) 1092 1 1 1 184 366
PSL(2, 17) 2448 1 1 1 308 750

A7 2520 352 352 352 352 842
PSL(2, 19) 3420 1 1 1 344 914
PSL(2, 16) 4080 1 1 1 1 784
PSL(3, 3) 5616 756 756 808 808 1562
PSU(3, 3) 6048 786 534 499 499 1346
PSL(2, 23) 6072 1267 1 1 508 1313
PSL(2, 25) 7800 1627 1 1 652 1757

M11 7920 1212 1212 1212 1212 2444
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A last note on cographs

We have seen hints that cographs and twin reduction are
relevant to the study of automorphism groups of the graphs in
the hierarchy. So we will revisit this material in the context of
automorphism groups later.

Question
Given a graph type X in the hierarchy, for which finite groups G is
X(G) a cograph?

Theorem
The power graph of G is a cograph if and only if there do not exist
g, h ∈ G such that g has order pr and h has order pq (where p, q, r are
primes and p 6= q) such that
I gr = hq;
I if p = r, then gp /∈ 〈hp〉.
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Split graphs and threshold graphs

The graph Γ is a split graph if its vertex set can be partitioned
into two subsets A and B such that A induces a complete graph
and B a null graph, with arbitary edges between A and B.

The graph Γ is a threshold graph if its vertices v can be given
weights a(v) and there is a threshold t such that v and w are
joined if and only if a(v) + a(w) > t. Equivalently, a threshold
graph is one whose vertices can be enumerated as
(v1, v2, . . . , vn) in such a way that vi is joined to all or none of its
predecessors.

Theorem
I A graph is a split graph if and only if it contains no induced

subgraph isomorphic to C4, C5, or 2K2.
I A graph is a threshold graph if and only if it contains no induced

subgraph isomorphic to P4, C4, or 2K2.

Here 2K2 is the graph with four vertices and two disjoint edges.
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Theorem
For a finite group, the following conditions are equivalent:

I Pow(G) is a split graph;
I Pow(G) is a threshold graph;
I Pow(G) has no induced subgraph isomorphic to 2K2;
I G does not have subgroups H1 and H2 such that each of H1 \H2

and H2 \H1 contains an element of order greater than 2;
I G is cyclic of prime power order, or an elementary abelian or

dihedral 2-group, or cyclic of order 2p, or dihedral of order 2pn or
4p, where p is an odd prime.

Note that this theorem is not restricted to nilpotent groups.
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Perfect graphs

The clique number of a graph is the size of the largest induced
complete subgraph, while the chromatic number is the least
number of colours required to colour the vertices so that
adjacent vertices get different colours. The chromatic number is
at least as large as the clique number, since a complete
subgraph needs as many colours as vertices for a proper
colouring.

A graph Γ is called perfect if every induced subgraph of Γ has
clique number equal to chromatic number.
It is known that many types of graph are perfect, including
bipartite graphs, line graphs of bipartite graphs, and
comparability graphs of partial orders.
I review some of the main facts about this class of graphs.
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It is known that many types of graph are perfect, including
bipartite graphs, line graphs of bipartite graphs, and
comparability graphs of partial orders.

I review some of the main facts about this class of graphs.



Perfect graphs

The clique number of a graph is the size of the largest induced
complete subgraph, while the chromatic number is the least
number of colours required to colour the vertices so that
adjacent vertices get different colours. The chromatic number is
at least as large as the clique number, since a complete
subgraph needs as many colours as vertices for a proper
colouring.
A graph Γ is called perfect if every induced subgraph of Γ has
clique number equal to chromatic number.
It is known that many types of graph are perfect, including
bipartite graphs, line graphs of bipartite graphs, and
comparability graphs of partial orders.
I review some of the main facts about this class of graphs.



The P4-structure of a graph Γ is the hypergraph whose
hyperedges are the subsets inducing a subgraph P4. Thus it is
the null hypergraph if and only if Γ is a cograph.

The weak, semi-strong and strong perfect graph theorems state:

Theorem
I (Lovász) The complement of a perfect graph is perfect.
I (Reed) If two graphs have isomorphic P4-structures and one is

perfect, then so is the other.
I (Chudnovsky et al.) A graph is perfect if and only if it has no

induced subgraph which is a cycle of odd length greater than 3 or
the complement of one.

The semi-strong theorem points up a possible connection with
cographs and twin reduction, which has not been explored.
Could it be true that graphs with isomorphic P4-structures have
cokernels with the same number of vertices?
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Perfect graphs in the hierarchy

We will see later that the power graph of a finite group is
perfect.

For the other graph types, they may or may not be perfect;
there are few results about this, apart from a theorem of Britnell
and Gill about the commuting graph. They assume that the
group G has a component, a subnormal quasisimple subgroup,
and determine all the possible groups which can arise as
components if the commuting graph is perfect.

Question
For each graph type X in the hierarchy other than the power graph,
determine the finite groups G for which X(G) is perfect.
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Coming up next . . .

In the next lecture, I will tell you about the Gruenberg–Kegel
graph of a finite group, which has made one brief appearance
in Lecture 2.

This small graph has a powerful influence over the much larger
graphs in the hierarchy, as we will see.
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