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The Gruenberg–Kegel graph

I knew Karl Gruenberg well. He was my colleague at Queen
Mary, University of London, from the time I moved there in
1986 until his death in 2007. His main work was in the
cohomology and integral representation of groups.
I was less well acquainted with Otto Kegel, but he visited
Oxford once a week for a term when I was a student there to
lecture on locally finite groups.
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The Gruenberg–Kegel graph or GK graph for short (sometimes
called the prime graph) of a finite group G was introduced by
Gruenberg and Kegel in an unpublished manuscript in 1975.
They were concerned with the decomposability of the
augmentation ideal of the integral group ring of G.

The vertex set of the graph is the set of prime divisors of the
order of G (equivalently, by Cauchy’s theorem, the set of orders
of elements of prime order in G). It has an edge joining p and q
if and only if G contains an element of order pq (equivalently,
there are commuting elements of orders p and q).
We will see that this small graph has a big influence on the
much larger graphs of our hierarchy on the group G. In this
lecture I will trace some of these connections.
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The theorem

The main theorem of Gruenberg and Kegel was a structure
theorem for groups whose GK graph is disconnected. This was
published by Williams (a student of Gruenberg) in 1981.

Recall the definitions of Frobenius group and 2-Frobenius
group from earlier:
I G is a Frobenius group if it has a non-trivial proper

subgroup H such that H ∩Hg = {1} for all g /∈ H. The set
of elements in no conjugate of H, together with the identity,
form a normal subgroup of G called the Frobenius kernel.

I G is a 2-Frobenius group if it has a normal series
{1}C N C M C G such that
I M is a Frobenius group with Frobenius kernel N;
I G/N is a Frobenius group with Frobenius kernel M/N.
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Theorem
Let G be a finite group whose GK-graph is disconnected. Then one of
the following holds:

I G is a Frobenius or 2-Frobenius group;
I G is an extension of a nilpotent π-group by a simple group by a

π-group, where π is the set of primes in the connected
component containing 2.

Which simple groups can occur in the second conclusion of the
theorem? This question was investigated by Williams, though
he was unable to deal with groups of Lie type in
characteristic 2. The work was completed by Kondrat’ev in
1989, and some errors corrected by Kondrat’ev and Mazurov in
2000.
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The GK graph is still a very active area of research. Some of the
questions considered are:
I Which groups are characterised by their GK graphs?

I Which groups are characterised by their labelled GK
graphs, where the vertices are labelled with the
corresponding primes, and how many different labellings
can a given graph have?
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To mention just one example: the paw, or balalaika, consists of
a triangle with a pendant vertex. Among groups whose GK
graph is isomorphic to the paw are the alternating group A10
and the automorphism group of the sporadic Janko group J2.
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Note that the same primes occur but 2 and 3 swap places.
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Graphs in the hierarchy determine the GK graph

Our first result shows that there is a connection between the
GK graph and the graphs in our hierarchy.

Theorem
Let X denote the power graph, enhanced power graph, deep
commuting graph, or commuting graph. If G and H are groups with
X(G) ∼= X(H), then the Gruenberg–Kegel graphs of G and H are
equal.
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Proof.
Consider first the enhanced power graph or the commuting
graph. A maximal clique in one of these graphs is a maximal
cyclic (resp. abelian) subgroup of G. So p and q are joined in the
GK graph if and only if there is a maximal clique of the graph
having order divisible by pq.

A similar but slightly more elaborate proof works for the deep
commuting graph.
Finally, we saw that if the power graphs of G and H are
isomorphic, then so are the enhanced power graphs.
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Conversely?

The converse is false, since the GK graph (even with labels)
does not determine the order of the group.

However, Natalia Maslova and I recently proved the following
theorem:

Theorem
There is a function F on the natural numbers with the property that,
if a finite n-vertex graph whose vertices are labelled by pairwise
distinct primes is the GK graph of more than F(n) finite groups, then
it is the GK graph of infinitely many finite groups.
The function we gave was O(n7); we believe that better bounds
are possible.
It is known that, if there exist infinitely many groups with a
given GK graph, then one of these groups has non-trivial
soluble radical.
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Power graph and enhanced power graph

We previously met the GK graph in this context. Recall that G
is an EPPO group if all elements have prime power order. So
here is the theorem we saw earlier:

Theorem
Let G be a finite group. Then the following are equivalent:
I Pow(G) = EPow(G);
I G contains no subgroup Cp × Cq for distinct primes p, q;
I G is an EPPO group;
I the GK graph of G has no edges.

I discussed the classification of EPPO groups in Lecture 2. The
theorem of Gruenberg and Kegel is an essential ingredient in
the proof.
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Connectedness

The questions of connectedness of the graphs in the hierarchy
will be discussed in much more detail in the next lecture. Here
I simply want to point to a couple of connections with the GK
graph.

In Com(G), elements of Z(G) are joined to all other vertices. So
it is natural to remove them and ask if what is left is still
connected. I will be concerned here with groups satisfying
Z(G) = {1}, so that the only vertex joined to all others in the
commuting graph is the identity. Clearly the same is true for
graphs below the commuting graph in the hierarchy.
So, for groups G with Z(G) = {1}, the notations Com−(G) and
Pow−(G) will denote the induced subgraphs of Com(G) and
Pow(G) on G \ {1}, and call them the reduced commuting and
power graphs. (These notations will be generalised in the next
lecture.)



Connectedness

The questions of connectedness of the graphs in the hierarchy
will be discussed in much more detail in the next lecture. Here
I simply want to point to a couple of connections with the GK
graph.
In Com(G), elements of Z(G) are joined to all other vertices. So
it is natural to remove them and ask if what is left is still
connected. I will be concerned here with groups satisfying
Z(G) = {1}, so that the only vertex joined to all others in the
commuting graph is the identity. Clearly the same is true for
graphs below the commuting graph in the hierarchy.

So, for groups G with Z(G) = {1}, the notations Com−(G) and
Pow−(G) will denote the induced subgraphs of Com(G) and
Pow(G) on G \ {1}, and call them the reduced commuting and
power graphs. (These notations will be generalised in the next
lecture.)



Connectedness

The questions of connectedness of the graphs in the hierarchy
will be discussed in much more detail in the next lecture. Here
I simply want to point to a couple of connections with the GK
graph.
In Com(G), elements of Z(G) are joined to all other vertices. So
it is natural to remove them and ask if what is left is still
connected. I will be concerned here with groups satisfying
Z(G) = {1}, so that the only vertex joined to all others in the
commuting graph is the identity. Clearly the same is true for
graphs below the commuting graph in the hierarchy.
So, for groups G with Z(G) = {1}, the notations Com−(G) and
Pow−(G) will denote the induced subgraphs of Com(G) and
Pow(G) on G \ {1}, and call them the reduced commuting and
power graphs. (These notations will be generalised in the next
lecture.)



The reduced commuting graph

The next theorem was perhaps folklore until it was made
explicit in a paper by Morgan and Parker, which I will discuss
in the next lecture.

Theorem
Let G be a finite group with Z(G) = {1}. Then the reduced
commuting graph of G is connected if and only if the GK graph is
connected.

The proof does not use the Classification of Finite Simple
Groups, or even the structure of groups with disconnected GK
graph. I outline it on the next three slides.
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Proof
Suppose first that Z(G) = 1 and the commuting graph is
connected. Let p and q be primes dividing |G|. Choose
elements g and h of orders p and q respectively, and suppose
their distance in the commuting graph is d. We show by
induction on d that there is a path from p to q in the GK graph.

If d = 1, then g and h commute, so gh has order pq, and p is
joined to q.



Proof
Suppose first that Z(G) = 1 and the commuting graph is
connected. Let p and q be primes dividing |G|. Choose
elements g and h of orders p and q respectively, and suppose
their distance in the commuting graph is d. We show by
induction on d that there is a path from p to q in the GK graph.
If d = 1, then g and h commute, so gh has order pq, and p is
joined to q.



So assume the result for distances less than d, and let
g = g0, . . . , gd = h be a path from g to h.

Let i be mimimal such that p does not divide the order of gi (so
i > 0). Now some power of gi−1, say ga

i−1, has order p, while a
power gb

i of gi has prime order r 6= p.

r r r r r r rg = g0 g1 gi−1 gi gd = h
p pa rb q
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Orders written in red under the vertices

The distance from gb
i to gd is at most d− i < d, so there is a path

from r to q in the GK graph. But ga
i−1 and gb

i commute, so p is
joined to r.
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For the converse, assume that the GK graph is connected.

Note first that for every non-identity element g, some power of
g has prime order, so it suffices to show that all elements of
prime order lie in the same connected component of the
commuting graph. Also, since a non-trivial p-group has
non-trivial centre, the non-identity elements of any Sylow
subgroup lie in a single connected component.
Let C be a connected component. Connectedness of the GK
graph shows that C contains a Sylow p-subgroup for every
prime p dividing |G|. Also, every element of C, acting by
conjugation, fixes C. It follows that the normaliser of C is G,
and hence that C contains every Sylow subgroup of G, and thus
contains all elements of prime order, as required.



For the converse, assume that the GK graph is connected.
Note first that for every non-identity element g, some power of
g has prime order, so it suffices to show that all elements of
prime order lie in the same connected component of the
commuting graph. Also, since a non-trivial p-group has
non-trivial centre, the non-identity elements of any Sylow
subgroup lie in a single connected component.

Let C be a connected component. Connectedness of the GK
graph shows that C contains a Sylow p-subgroup for every
prime p dividing |G|. Also, every element of C, acting by
conjugation, fixes C. It follows that the normaliser of C is G,
and hence that C contains every Sylow subgroup of G, and thus
contains all elements of prime order, as required.
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The reduced power graph

A similar result holds in one direction for the reduced power
graph of a group with trivial centre:

Proposition

Let G be a group with Z(G) = {1}. If Pow−(G) is connected, then
the GK-graph of G is connected.
The proof is left as an exercise for the reader.



Is the power graph a cograph?

The GK graph is also relevant to this question. There is a
necessary condition, and a sufficient condition, for the power
graph of a group to be a cograph, in terms of the GK graph.
However, we will see that there is no necessary and sufficient
condition.

Theorem

1. Suppose that all connected components of the GK graph are
singletons (that is, G is an EPPO group). Then the power graph
of G is a cograph.

2. Suppose that G is insoluble, and that the power graph of G is a
cograph. Then every connected component of the GK graph of G
except possibly the component containing the prime 2 has size at
most 2.
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No necessary and sufficient condition

Consider the two simple groups PSL(2, 11) and M11. The order
of each has prime divisors 2, 3, 5 and 11, and each contains
elements of order 6 but none of other orders pq for distinct
primes p, q.

So in each case the GK graph has an edge {2, 3} and isolated
vertices 5 and 11.
However, Pow(PSL(2, 11)) is a cograph, but Pow(M11) is not.
We saw this for PSL(2, 11) earlier; we will discuss M11 in more
detail later.
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Proof.
1. Suppose that G is an EPPO group. Then, in Pow−(G), there
are no edges between elements of distinct prime power orders,
so it suffices to show that the induced subgraph on the set of
elements of p-power order is a cograph. This is proved by the
same argument as that showing that the power graph of a
group of prime power order is a p-group.

2. A result in the paper of Williams shows that, if π is a
connected component of the GK graph of an insoluble group G
which does not contain the prime 2, then G has a nilpotent Hall
π-subgroup. By my result with Manna and Mehatari, if the
power graph of such a subgroup H is a cograph, then H is
either of prime power order or cyclic of order pq, where p and q
are distinct primes.
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A difference

This is an isolated result to show that it is possible to say
something about the differences between graphs in the
hierarchy. We let (Com− Pow)(G) be the graph whose edges
are those of Com(G) which are not edges of Pow(G).

Theorem
Suppose that the finite group G satisfies the following conditions:
I The Gruenberg–Kegel graph of G is connected.
I If P is any Sylow subgroup of G, then Z(P) is non-cyclic.

Then the induced subgraph of (Com−Pow)(G) on G \ {1} either
has an isolated vertex or is connected.
The hypotheses are very much too strong, and the conclusion
rather weak; surely it is possible to do better.
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Proof
Let Γ(G) denote the induced subgraph of (Com−Pow)(G) on
G \ {1}. Note that, if H is a subgroup of G, then the induced
subgraph of Γ(G) on H \ {1} is Γ(H).

First we show that, if P is a p-group, then Γ(P) is connected. Let
Q 6 Z(P) with Q ∼= Cp × Cp. Then the induced subgraph on
Q \ {1} is complete multipartite with p + 1 blocks of size p− 1,
corresponding to the cyclic subgroups of Q. So it suffices to
show that any element z of P \ {1} has a neighbour in Q \ {1}.
We see that z commutes with Q since Q 6 Z(P); and 〈z〉 ∩Q is
cyclic so there is some element of Q not in this set.
Now let C be a connected component of Γ(G) containing an
element z of prime order p. Since Γ(G) is invariant under
Aut(G), in particular it is normalized by all its elements, so
〈C〉 6 NG(C). In particular, C contains a Sylow p-subgroup of G
(one containing the given element of order p in C).
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If C contains an element of prime order r, and {r, s} is an edge
of the GK graph, then G contains an element g of order rs, then
without loss of generality gs ∈ C, and gs is joined to gr in Γ(G),
so also gr ∈ C. Now connectedness of the GK graph shows that
C contains a Sylow q-subgroup of G for every prime divisor of
|G|. Hence |NG(C)| is divisible by every prime power divisor of
|G|, whence NG(C) = G.

Finally, let g be any non-identity element of G. Choose a
maximal cyclic subgroup K containing g. If CG(K) = K, then the
generator of K commutes only with its powers, and is isolated
in Γ(G). If not, then there is an element of prime order in
CG(K) \K. (If h ∈ CG(K) \K, then 〈g, h〉 is abelian but not cyclic,
so contains a subgroup 〈g〉 × Cm for some m; choose an element
of prime order in the second factor.) This element is joined to g
in the commuting graph but not in the power graph; so g ∈ C.
We conclude that C = G \ {1}, and the proof is done.
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Coming up next . . .

In this lecture we saw a couple of results about the
connectedness of graphs in the hierarchy.

In the next section we will examine this more systematically.
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