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Connectedness

In this lecture we look more systematically at connectedness of
the graphs in the hierarchy, their complements, and related
graphs such as intersection graphs of subgroups of various
types.

As well as questions of connectedness, we will be interested in
bounds for the diameter of connected components.
In the commuting graph, as we have seen, vertices in the centre
Z(G) are joined to all others; so, to make the question
non-trivial, we remove these vertices. Our first task is to look at
the other graphs in the hierarchy and determine which vertices
are joined to all others.
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Dominating vertices

For each graph type X in the hierarchy, we let ZX(G) denote the
set of vertices which are joined to all other vertices of G.

Theorem
I ZPow(G) is equal to G if G is cyclic of prime power order; or the

set consisting of the identity and the generators if G is cyclic of
non-prime-power order; or Z(G) if G is a generalized quaternion
group; or {1} otherwise.

I ZEPow(G) is the product of the Sylow p-subgroups of Z(G) for
p ∈ π, where π is the set of primes p for which the Sylow
p-subgroup of G is cyclic or generalized quaternion; in
particular, ZEPow(G) is cyclic.

I ZDCom(G) is the projection into G of Z(H), where H is a Schur
cover of G.

I ZCom(G) = Z(G).
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Note that, in all cases except ZPow(G) where G is cyclic of
non-prime-power order, ZX(G) is a subgroup of G.

By contrast, ZNGen(G) is more mysterious. It contains the
Frattini subgroup of G, and also the centre, but it may not be a
subgroup. For example, if G = C6 × C6, then ZNGen(G) is the
union of the Sylow 2- and 3-subgroups of G.
We now formally define the reduced graph X−(G) of each type
X in the hierarchy to be the induced subgraph of X(G) on
G \ ZX(G).
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The commuting graph

The question was first investigated for the commuting graph.
Early results led Iranmanesh and Jafarzadeh to conjecture that
there is an absolute upper bound on the diameter of any
connected component of the reduced commuting graph. This
was refuted by Giudici and Parker, but Morgan and Parker
showed that it is true for groups with trivial centre:

Theorem
I For any given d there is a 2-group whose reduced commuting

graph is connected with diameter greater than d.
I Suppose that the finite group G has trivial centre. Then every

connected component of its reduced commuting graph has
diameter at most 10.



The commuting graph

The question was first investigated for the commuting graph.
Early results led Iranmanesh and Jafarzadeh to conjecture that
there is an absolute upper bound on the diameter of any
connected component of the reduced commuting graph. This
was refuted by Giudici and Parker, but Morgan and Parker
showed that it is true for groups with trivial centre:

Theorem
I For any given d there is a 2-group whose reduced commuting

graph is connected with diameter greater than d.

I Suppose that the finite group G has trivial centre. Then every
connected component of its reduced commuting graph has
diameter at most 10.



The commuting graph

The question was first investigated for the commuting graph.
Early results led Iranmanesh and Jafarzadeh to conjecture that
there is an absolute upper bound on the diameter of any
connected component of the reduced commuting graph. This
was refuted by Giudici and Parker, but Morgan and Parker
showed that it is true for groups with trivial centre:

Theorem
I For any given d there is a 2-group whose reduced commuting

graph is connected with diameter greater than d.
I Suppose that the finite group G has trivial centre. Then every

connected component of its reduced commuting graph has
diameter at most 10.



Power graph and enhanced power graph

For the power graph and enhanced power graph, we note that,
if the group G is not cyclic or generalized quaternion, then
ZPow(G) = ZEPow(G) = {1}. For such groups, the question has
been considered by several authors.

The next result shows that we have only one rather than two
problems to consider.

Proposition

Let G be a group with Z(G) = {1}. Then the reduced power graph of
G is connected if and only if the reduced enhanced power graph of G
is connected.

Proof.
The forward implication is trivial; for the reverse, if x and y are
joined in the enhanced power graph, they are joined by a path
of length 2 in the power graph, whose intermediate vertex is
not the identity.
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The non-generating graph

From CFSG, we know that every non-abelian finite simple
group is 2-generated. Thus, at least for simple groups, the
non-generating graph is not complete.

It is further known that, if G is non-abelian simple, then
ZNGen(G) = {1} (we’ll see a stronger result shortly); so for the
reduced graph, only the identity needs to be deleted.
Shen proved that the reduced non-commuting graph is
connected. Recently Saul Freedman proved the following
theorem.

Theorem
Let G be a non-abelian finite simple group. Then the reduced
non-generating graph of G is connected with diameter at most 5.
It is not currently known whether diameter 5 is realised; the
best upper bound is either 4 or 5. These results will be in Saul’s
thesis and are not yet available.
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Complements

We now consider the complements of the graphs in the
hierarchy. We begin with a few remarks.

I For any graph type X in the hierarchy, ZX(G) is the set of
elements of G which are isolated in X(G)c.

I Taking complements reverses the order. So moving down
the hierarchy adds edges to the complement.

I As a result, if G is a group and X and Y are graph types
with X below Y for which ZX(G) = ZY(G), then
connectedness of Y(G)c implies connectedness of X(G)c.

In particular, if G is a non-abelian finite simple group, then for
any type X in the hierarchy, (X(G)−)c (the complement of the
reduced X graph on G) is connected with diameter at most 5.
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Here is a result which applies to the commuting graphs of
arbitrary groups.

Proposition

Let Γ be a graph whose vertex set is a group G, and suppose that for
any vertex g ∈ G, the closed neighbourhood of g is a subgroup of G.
Then the complementary graph has just one connected component of
size larger than 1; this component has diameter at most 2.

Proof.
The isolated vertices in the complement of Γ are the vertices
whose closed neighbourhood in Γ is the whole of G. Let g1, g2
be two elements of G which are not isolated in the complement
of Γ. Then H1 = {g1} ∪N(g1) and H2 = {g2} ∪N(g2) are
subgroups of G, where N(g) is the open neighbourhood of g.
Since a finite group cannot be written as the union of two
proper subgroups (a simple consequence of Lagrange’s
Theorem), there is a vertex h outside these two subgroups,
hence joined to g1 and g2 in the complement.
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From this result, it is easy to see that the complement of the
deep commuting graph of a group G is connected with
diameter 2 apart from isolated vertices. (The Proposition
applies because the closed neighbourhood of a vertex is its
centraliser.)

With a little more effort, it can be shown that the complement
of the power graph is connected apart from isolated vertices.
Two questions remain, which are perhaps not too difficult:

Question
What is the best upper bound for the diameter of the non-trivial
component of the complement of the power graph (assuming that G is
not cyclic of prime power order)?

Question
What about the enhanced power graph?
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Intersection graphs

We can apply some of these results to another type of graph
obtained from a finite group G.

Let G be a group which is not trivial and not cyclic of prime
order. Let F be a family of non-trivial proper subgroups of G.
The intersection graph of F is the graph whose vertices are the
subgroups in F , with H joined to K whenever H ∩ K 6= {1}.
If we just speak of the intersection graph of G, we take F to
consist of all non-trivial proper subgroups of G.
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Bipartite graphs

Let B be a bipartite graph: this means there is a bipartition of
the vertex set, a partition into two parts X and Y, such that all
edges of the graph have one vertex in X and one in Y.

A connected bipartite graph has a unique bipartition: choose a
vertex v, and put all vertices at even distance from v into X and
all those at odd distance into Y.
A disconnected bipartite graph has more than one bipartition
(indeed, it has 2k−1 bipartitions, where k is the number of
connected components). But we will choose a fixed bipartition,
and regard it as part of the structure of the graph.
Note that X and Y induce null subgraphs of B.
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Duality

Let B be a bipartite graph with bipartition {X, Y}. The halved
graphs of B are the graphs Γ and ∆ with vertex sets X and Y
respectively, such that two vertices in one of these sets are
joined by an edge in the corresponding halved graph if and
only if they lie at distance 2 in B.

We say that a pair Γ, ∆ of graphs are dual to each other if there
is a bipartite graph with no isolated vertices such that Γ and ∆
are isomorphic to its halved graph.
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Dual graphs arise, for example, in incidence geometry. If B is an
incidence structure consisting of points and lines, with each
point on a line and each line containing a point, then we can
represent B as a bipartite graph whose vertices are the points
and lines, two vertices joined if they are a point and a line and
are incident.

The halved graphs are called the point graph and line graph of
the incidence structure.
Duality also arises in the theory of experimental design in
statistics, but I will not detour to discuss this.
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Connectedness and diameter

Theorem
Let Γ and ∆ be dual graphs. Then Γ is connected if and only if ∆ is
connected. More generally, there is a bijection between the connected
components of Γ and those of ∆, with the property that the diameters
of corresponding components differ by at most 1.

Proof.
The correspondence is given by the rule that a component of Γ
and one of ∆ correspond if some vertex of Γ is joined to a vertex
of ∆ in the graph B.
If two vertices v, w of Γ have distance d in Γ, then they have
distance 2d in B, and neighbours of v and w have distance
2d− 2, 2d or 2d + 2 in B, hence distance d− 1, d or d + 1 in
∆.



Connectedness and diameter

Theorem
Let Γ and ∆ be dual graphs. Then Γ is connected if and only if ∆ is
connected. More generally, there is a bijection between the connected
components of Γ and those of ∆, with the property that the diameters
of corresponding components differ by at most 1.

Proof.
The correspondence is given by the rule that a component of Γ
and one of ∆ correspond if some vertex of Γ is joined to a vertex
of ∆ in the graph B.

If two vertices v, w of Γ have distance d in Γ, then they have
distance 2d in B, and neighbours of v and w have distance
2d− 2, 2d or 2d + 2 in B, hence distance d− 1, d or d + 1 in
∆.



Connectedness and diameter

Theorem
Let Γ and ∆ be dual graphs. Then Γ is connected if and only if ∆ is
connected. More generally, there is a bijection between the connected
components of Γ and those of ∆, with the property that the diameters
of corresponding components differ by at most 1.

Proof.
The correspondence is given by the rule that a component of Γ
and one of ∆ correspond if some vertex of Γ is joined to a vertex
of ∆ in the graph B.
If two vertices v, w of Γ have distance d in Γ, then they have
distance 2d in B, and neighbours of v and w have distance
2d− 2, 2d or 2d + 2 in B, hence distance d− 1, d or d + 1 in
∆.



A problem

Question
Are there other graph-theoretic properties which can be transferred
from a graph to its dual?
Under some (rather strong) regularity conditions, the spectrum
of each graph is determined by the spectrum of the other.



First application

Theorem
For any finite group G which is not cyclic, the non-generating graph
of G on G# = G \ {1} and the intersection graph of G are duals.

Proof.
We define B by the rule that the element g ∈ G and the
non-trivial proper subgroup H ≤ G are joined if g ∈ H. Since G
is not cyclic, for every g 6= 1, the subgroup 〈g〉 is non-trivial and
proper; and any non-trivial subgroup H contains a non-identity
element.

Now g and h are joined in NGen(G) if and only if 〈g, h〉 6= G;
and H and K are joined if and only if there is a non-identity
element g ∈ H ∩ K.
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The intersection graph

The intersection graph of a finite group was first investigated
by Csákány and Pollák, who considered non-simple groups;
they determined the groups for which the intersection graph is
connected and showed that, in these cases, its diameter is at
most 4.

For simple groups, Shen showed that the graph is connected
and asked for an upper bound; Herzog et al. gave a bound of
64, which was improved to 28 by Ma, and to the best possible 5
by Freedman, who showed that the upper bound is attained
only by the Baby Monster and some unitary groups (it is not
currently known exactly which).
(Recall here that the diameter of the non-generating graph of a
finite simple group is known to be at most 5; no examples with
diameter 5 are known.)
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A refinement

We don’t need to take all subgroups here:

Theorem
If G is non-cyclic, then the induced subgraph of NGen(G) on G# and
the intersection graph of maximal proper subgroups of G are dual.

Proof.
We simply have to note that two elements g, h ∈ G which don’t
generate G are contained in some maximal subgroup of G.
So results about connectedness transfer to this graph as well.



Other examples

Theorem
Suppose that G is non-trivial and Z(G) = {1}. Then the reduced
commuting graph of G and the intersection graph of abelian
subgroups (or of maximal abelian subgroups) of G are duals.

Proof.
We simply have to note that two elements which commute are
contained in a (maximal) abelian subgroup of G, which is
proper since G is nonabelian.
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Recall that, for groups with trivial centre, connectedness of the
Gruenberg–Kegel graph is equivalent to connectedness of the
reduced commuting graph; so it is also equivalent to
connectedness of the intersection graph of (maximal) abelian
subgroups.

We also have an upper bound for the diameter of connected
components.
A similar result holds for the enhanced power graph and the
intersection graph of (maximal) cyclic subgroups. I leave its
formulation and proof as an exercise.
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Differences

Of course, questions about connectedness of differences
between graphs in the hierarchy can also be asked.

The case of (NGen−Com)(G) has been investigated by Saul
Freedman, under the name non-commuting non-generating
graph.
Results for nilpotent groups have already appeared:

Theorem
Let G be a finite nilpotent group. Then the induced subgraph of
(NGen−Com)(G) on G \ Z(G) is connected of diameter 2 or 3,
apart from isolated vertices. If the diameter is 3, then there are no
isolated vertices.
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Other differences

We saw a rather weak result for (Com− Pow)(G) in the last
lecture.

But, for the most part, this is unexplored territory.
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Coming up next . . .

Our next topic concerns universality. Which graphs are
embeddable as induced subgraphs in the power graph, or one
of the other members of the hierarchy, of some group G?

In brief, the power graph is the comparability graph of a partial
order, but every such comparability graph is embeddable in the
power graph of some group; the other graph types in the
hierarchy are universal, in the sense that all finite graphs are
embeddable.
We will also look briefly at other graph parameters.
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