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Partial preorders and partial orders

A partial preorder is a binary relation on a set X, which I will
denote by→, which is reflexive and transitive; that is,

I for all x ∈ X, x→ x (that is, regarded as a directed graph,
there is a loop at each vertex);

I for all x, y, z ∈ X, if x→ y and y→ z then x→ z.
A partial preorder is sometimes called a preferential
arrangement. If we arrange, say, political candidates in order of
preference, there may be some pairs of candidates about whom
we are indifferent.
A partial order is a partial preorder which is antisymmetric;
that is, it also satisfies the condition
I for all x, y ∈ X, if x→ y and y→ x then x = y.
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The structure theorem

Given a partial preorder→ on X, define a relation ≡ by the rule
that x ≡ y if x→ y and y→ x. In the language of preferential
arrangements, that means we are indifferent about x and y.

Theorem
Let→ be a partial preorder on X.
I The relation ≡ is an equivalence relation on X.
I If [x] denotes the equivalence class containing x, then the

relation on X/≡ defined by [x] 4 [y] if x→ y is independent of
the choice of representatives of the equivalence classes, and is a
partial order.

The proof is an exercise.
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Comparability graph
The comparability graph of a partial preorder is the graph on
the vertex set X, in which {x, y} is an edge if x 6= y and either
x→ y or y→ x (or both). (Note that, as usual in graph theory,
we have removed loops.)

Theorem
The graph Γ is the comparability graph of a partial order if and only if
it is the comparability graph of a partial preorder.

Proof.
The forward implication is clear. For the converse, let→ be a
partial preorder, and ≡ the equivalence relation defined on the
preceding slide. Refine→ by imposing a total order on each
≡-class. The result is a partial order with the same
comparability graph.
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Dilworth’s Theorem

Recall that a graph Γ is perfect if every induced subgraph has
clique number equal to chromatic number.

Theorem
(Dilworth) The comparability graph of a partial order, and its
complement, are perfect.

Proof
Since a subgraph of a comparability graph is a comparability
graph, it suffices to show that a comparability graph (or its
complement) has clique number equal to chromatic number.
Now a clique in a comparability graph is a chain (a set of
pairwise comparable elements), and an independent set is an
antichain (a set of pairwise incomprabale elements).
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So we have to prove that

I if the size of a maximal chain is c, there is a partition into c
antichains;

I if the size of a maximal antichain is a, there is a partition
into a chains.

The first is straightforward: partition the points by the length of
the longest chain ending at that point. The second is the
essence of the theorem.

By the Weak Perfect Graph Theorem, the second part follows
from the first; but of course this postdates Dilworth’s Theorem.



So we have to prove that
I if the size of a maximal chain is c, there is a partition into c

antichains;

I if the size of a maximal antichain is a, there is a partition
into a chains.

The first is straightforward: partition the points by the length of
the longest chain ending at that point. The second is the
essence of the theorem.

By the Weak Perfect Graph Theorem, the second part follows
from the first; but of course this postdates Dilworth’s Theorem.



So we have to prove that
I if the size of a maximal chain is c, there is a partition into c

antichains;
I if the size of a maximal antichain is a, there is a partition

into a chains.

The first is straightforward: partition the points by the length of
the longest chain ending at that point. The second is the
essence of the theorem.

By the Weak Perfect Graph Theorem, the second part follows
from the first; but of course this postdates Dilworth’s Theorem.



So we have to prove that
I if the size of a maximal chain is c, there is a partition into c

antichains;
I if the size of a maximal antichain is a, there is a partition

into a chains.
The first is straightforward: partition the points by the length of
the longest chain ending at that point. The second is the
essence of the theorem.

By the Weak Perfect Graph Theorem, the second part follows
from the first; but of course this postdates Dilworth’s Theorem.



So we have to prove that
I if the size of a maximal chain is c, there is a partition into c

antichains;
I if the size of a maximal antichain is a, there is a partition

into a chains.
The first is straightforward: partition the points by the length of
the longest chain ending at that point. The second is the
essence of the theorem.

By the Weak Perfect Graph Theorem, the second part follows
from the first; but of course this postdates Dilworth’s Theorem.



The power graph is a comparability graph

Theorem
The power graph of a finite group G is the comparability graph of a
partial order.

Proof.
The directed power graph (with loops) is a partial preorder; for
I x = x1;
I if y = xm and z = yn then z = xmn.

The power graph is its comparability graph.
Is there anything more special about the class of power graphs?
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Universality

In a certain sense, the answer is no:

Theorem
Let the finite graph Γ be the comparability graph of a partial order.
Then there is a finite group G such that Γ is isomorphic to an induced
subgraph of Pow(G).
The proof is coming up shortly. But I note here two questions
which can be asked about this and other similar results:

Question
Find an upper bound on the function f such that, given any n-vertex
comparability graph, there is a group of order at mot f (n) in whose
power graph we can embed Γ.

Question
Find an upper bound on the function F such that there exists a group
of order at most F(n) whose power graph embeds every comparability
graph on at most n vertices.
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Proof.
Let Γ be the comparability graph of a partial order 4 on
{1, . . . , n}. Let p1, . . . , pn be distinct primes, and take
G = Cp1 × · · · × Cpn , where Cpi = 〈ai〉.

Now let Ai = {j ∈ {1, . . . , n} : j 4 i}. It is routine to check that
Aj ⊆ Ai if and only if j 4 i, and Aj = Ai if and only if j = i.
Now put bi = ∏{aj : j ∈ Ai}. Check that the following are
equivalent:
I bi and bj are joined in Pow(G);
I one of Ai and Aj contains the other;
I i and j are joined in Γ.
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Other graphs

Theorem
Let X denote one of EPow, DCom, Com, NGen. Then, given any
finite graph Γ, there is a group G such that Γ is isomorphic to an
induced subgraph of X(G).

In other words, all the other graph types in the hierarchy are
universal. So any graph property defined by forbidden induced
subgraphs (such as being perfect, a cograph, a threshold graph,
etc.) will fail to hold in the graph defined on some groups.
I have previously mentioned some instances of the general
problem:

Question
Given a graph type X, and a class C of graphs defined by forbidden
induced subgraphs, determine the groups G for which X(G) ∈ C.
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Three more

The next three graphs in the hierarchy can be dealt with
together, by an argument which also suggests several further
open problems.

Theorem
Let Γ be a finite complete graph, whose edges are coloured red, green
and blue in any manner. Then there is an embedding of Γ into a finite
group G so that
1. vertices joined by red edges are adjacent in the enhanced power

graph;
2. vertices joined by green edges are adjacent in the commuting

graph but not in the enhanced power graph;
3. vertices joined by blue edges are non-adjacent in the commuting

graph.
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We can get several results by specialising this construction:

I If we ignore the green/blue distinction, we get an
embedding of an arbitrary graph in the enhanced power
graph of a group.

I If we ignore the red/green distinction, we get an
embedding of an arbitrary graph in the commuting graph
of a group.

I If we simply have no green edges, then we have
simultaneously embedded the red graph in the enhanced
power graph, the deep commuting graph, and the
commuting graph.

I If we ignore the red/blue distinction, we get an
embedding of an arbitrary graph in the graph
(Com− EPow)(G) for some group G.
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Proof
We begin with two observations. First, the direct product of
cyclic (resp. abelian) groups of coprime orders is cyclic (resp.
abelian).

Second, consider the non-abelian group of order p3 and
exponent p2, where p is an odd prime:

P = 〈a, b | ap2
= bp = 1, [a, b] = ap〉.

Any two elements of 〈a〉 generate a cyclic group; and the group
generated by b and x is cyclic if x = 1, abelian but not cyclic if
x = ap, and non-abelian if x = a.
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The proof is by induction on the number n of vertices. The
result is clearly true if n = 1. So let {v1, . . . , vn} be the vertex set
of Γ, and suppose that we have an embedding of {v1, . . . , vn−1}
into a group G satisfying conditions 1–3 of the theorem.

Choose an odd prime p not dividing |G|, and consider the
group P×G, where P is as above. Modify the embedding of the
first n− 1 vertices by replacing vi by (1, vi) if {vi, vn} is red, by
(ap, vi) if {vi, vn} is green, and by (a, vi) if {vi, vn} is blue. It is
easily checked that we still have an embedding of
{v1, . . . , vn−1} satisfying 1–3.
If we now embed vn as (b, 1), we find that the conditions hold
for the remaining pairs as well.
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The non-generating graph

Finally we show the same universality property for the
non-generating graph. First, we need a preliminary result.

Theorem
Every graph without isolated vertices and edges can be represented as
the intersection graph of a family of sets (that is, the vertices are
identified with the sets, two vertices adjacent if the corresponding sets
have non-empty intersection).

Proof.
Let E be the edge set of Γ, and for each vertex v, let Sv be the set
of edges incident with v. Then

Sv ∩ Sw =

{
{e} if e = {v, w};
∅ if v and w are not joined.
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Given a graph Γ, we want to embed Γ as an induced subgraph
of the non-generating graph of a group. We do this in four
steps.

Step 1 Replace Γ by its complement, and represent this graph
as an intersection graph.
Step 2 Add some dummy points, each lying in just one of the
sets, so that they all have the same cardinality k, with k ≥ 3.
Now add some dummy points in none of the sets so that the
cardinality n of the set Ω of points satisfies the conditions that
n > 2k and n− k is prime.
Step 3 Now replace each set by its complement. The
complements of two subsets of Ω have union Ω if and only if
the two sets are disjoint. Thus, each original vertex is now
represented by an (n− k)-set where two such sets have union
Ω if and only if the corresponding vertices are adjacent in Γ.
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Step 4 Replace each set by a cyclic permutation on that set,
fixing the remaining points. Each of these cycles has odd prime
length, so each is an even permutation, and so lies in the
alternating group An. Let gv be the permutation corresponding
to the vertex v of Γ.
I If v and w are nonadjacent, then the supports of gv and gw

have union strictly smaller than Ω, so 〈gv, gw〉 6= An.
I Suppose v and w are adjacent. Then the supports of gv and

gw have union Ω, so H = 〈gv, gw〉 is transitive on Ω. Using
Jordan’s theorem, we conclude that H contains the
alternating group An. Since it is generated by even
permutations, H = An.



Further properties and parameters

There are a vast number of graph properties and parameters,
many of which have been studied for individual graph types in
the hierarchy.

For example, a survey of power graphs in 2013 included nearly
100 references, while a survey of developments since then has
another nearly 100 references.
I will not even attempt to summarise all this work. Instead, I
will say a small amount about cliques (complete subgraphs)
and independent sets (null induced subgraphs). The clique
number ω(Γ) is the number of vertices in the largest clique,
and the independence number α(Γ) is the number of vertices in
the largest independent set.
Since power graphs are perfect, the clique number of Pow(G) is
equal to its chromatic number, and the independence number
is equal to the clique cover number.
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For three of our types, the clique number has a group-theoretic
interpretation:

Proposition

I The clique number of EPow(G) is equal to the maximal order of
a cyclic subgroup of G.

I The clique number of Com(G) is equal to the maximum order of
an abelian subgroup of G.

I The clique number of DCom(G) is equal to the maximum order
of a subgroup of G which lifts to an abelian subgroup in a Schur
cover of G.

The only thing that needs comment is that, if a set of elements
in a group has the property that any two generate a cyclic
group, then the whole set is contained in a cyclic group. The
proof is an exercise.
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Clique number of the power graph

We begin with cyclic groups. The clique number of Pow(Cn)
was determined by Alireza et al. in 2015. I give a slightly
different account.

Define a function f on the natural numbers recursively by the
rule
I f (1) = 1;
I for n > 1, f (n) = φ(n) + f (n/p), where φ is Euler’s totient

function and p is the smallest prime divisor of n.

Theorem
The clique number of Pow(Cn) is equal to f (n).
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Proof.
The group Cn has φ(n) generators; they are dominating vertices
in the power graph, so are contained in every maximal clique.
It can be shown that the remainder of any maximal clique is
contained in a proper subgroup, and the best we can do is to
take a maximum-size clique in the largest proper subgroup, the
cyclic group of order n/p. Now induction gets us home.
The function f has a curious property:

Proposition

f (n) ≤ 3φ(n).

In fact, the limit superior of the ratio f (n)/φ(n) is about
2.6481017597 . . .. Sean Eberhard has observed that it is equal to

∞

∑
k=0

k

∏
i=1

1
pi − 1

,

where p1, p2, . . . are the primes in order.
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General groups

Rather confusingly, group theorists use the symbol ω(G) for
the spectrum of G, the set of orders of elements of G.

Theorem
Let G be a finite group.
I ω(EPow(G)) = max ω(G).
I ω(Pow(G)) = max{f (m) : m ∈ ω(G)}.

We have seen the first statement; the second holds since a
clique in Pow(G) is a clique in EPow(G), which is contained in
a cyclic subgroup.
The function f is not monotonic, so it is not true that
ω(Pow(G)) = f (ω(EPow(G))). Let G = PGL(2, 11). The
maximal elements of ω(G) are 10, 11 and 12; so
ω(EPow(G)) = 12. We have f (10) = f (12) = 9 and f (11) = 11,
so ω(Pow(G)) = 11.
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Coming up next

In the next lecture, I will extend the hierarchy upwards by
discussing several further graphs: the nilpotency, solubility,
and Engel graphs.

We will look briefly at some topics we have discussed for the
graphs considered so far: especially, the set of vertices joined to
all others, and universality.
The Engel graph, like the power graph, is the undirected
version of a directed graph, but there seems to have been no
study of this digraph.
I will also say something about automorphisms of these graphs.
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