
Graphs defined on groups

Peter J. Cameron
University of St Andrews

QMUL (emeritus)

Lecture 7: Onward and upward
9 June 2021



I begin this lecture with some comments about extending the
hierarchy upwards.

Let C be a class of groups, which we suppose to be closed under
taking subgroups. Then we can define a graph type on a group
G by the rule that x and y are joined if and only if 〈x, y〉 ∈ C.
We have already seen two examples. Taking C to be the class of
cyclic groups gives the enhanced power graph, while taking C
to be the class of abelian groups gives the commuting graph.
The obvious classes to take are the classes of nilpotent groups
and soluble groups, giving the graphs Nilp(G) and Sol(G),
lying above Com(G) in the hierarchy. If G is insoluble, then
they both lie below NGen(G).
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Minimal excluded groups

For our study, we need the analogue of the Miller–Moreno
theorem:

Theorem
I A minimal non-nilpotent group is 2-generated.

I A minimal insoluble group is 2-generated.

Minimal non-nilpotent groups were classified by Schmidt;
these groups are called Schmidt groups. By inspection, they are
2-generated and soluble.
I do not know a complete classification of minimal insoluble
groups. But if G is such a group, and S is its soluble radical,
then G/S is a minimal (non-abelian) simple group; such groups
were classified by Thompson (in his N-group paper), and all
are 2-generated (without using CFSG). If we take generators of
G/S and lift to G, the resulting elements generate G (by
minimality, since the subgroup they generate is insoluble).



Minimal excluded groups

For our study, we need the analogue of the Miller–Moreno
theorem:

Theorem
I A minimal non-nilpotent group is 2-generated.
I A minimal insoluble group is 2-generated.

Minimal non-nilpotent groups were classified by Schmidt;
these groups are called Schmidt groups. By inspection, they are
2-generated and soluble.
I do not know a complete classification of minimal insoluble
groups. But if G is such a group, and S is its soluble radical,
then G/S is a minimal (non-abelian) simple group; such groups
were classified by Thompson (in his N-group paper), and all
are 2-generated (without using CFSG). If we take generators of
G/S and lift to G, the resulting elements generate G (by
minimality, since the subgroup they generate is insoluble).



Minimal excluded groups

For our study, we need the analogue of the Miller–Moreno
theorem:

Theorem
I A minimal non-nilpotent group is 2-generated.
I A minimal insoluble group is 2-generated.

Minimal non-nilpotent groups were classified by Schmidt;
these groups are called Schmidt groups. By inspection, they are
2-generated and soluble.

I do not know a complete classification of minimal insoluble
groups. But if G is such a group, and S is its soluble radical,
then G/S is a minimal (non-abelian) simple group; such groups
were classified by Thompson (in his N-group paper), and all
are 2-generated (without using CFSG). If we take generators of
G/S and lift to G, the resulting elements generate G (by
minimality, since the subgroup they generate is insoluble).



Minimal excluded groups

For our study, we need the analogue of the Miller–Moreno
theorem:

Theorem
I A minimal non-nilpotent group is 2-generated.
I A minimal insoluble group is 2-generated.

Minimal non-nilpotent groups were classified by Schmidt;
these groups are called Schmidt groups. By inspection, they are
2-generated and soluble.
I do not know a complete classification of minimal insoluble
groups. But if G is such a group, and S is its soluble radical,
then G/S is a minimal (non-abelian) simple group; such groups
were classified by Thompson (in his N-group paper), and all
are 2-generated (without using CFSG). If we take generators of
G/S and lift to G, the resulting elements generate G (by
minimality, since the subgroup they generate is insoluble).



Nilp(G) and Sol(G)

Theorem

1. For any finite group G, we have
E(Com(G)) ⊆ E(Nilp(G)) ⊆ E(Sol(G)).

2. E(Com(G)) = E(Nilp(G)) if and only if all the Sylow
subgroups of G are abelian.

3. E(Nilp(G)) = E(Sol(G)) if and only if G is nilpotent.
4. E(Com(G)) = E(Sol(G)) if and only if G is abelian.
5. If G is non-nilpotent, then E(Nilp(G)) ⊆ E(NGen(G));

equality holds if and only if G is a Schmidt group.
6. If G is insoluble, then E(Sol(G)) ⊆ E(NGen(G)); equality

holds if and only if G is a minimal insoluble group.

We have observed the first part already, while parts 5 and 6
follow from the fact that these groups are 2-generated.
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Proof of 2 Suppose that E(Com(G)) = E(Nilp(G)). Then two
elements from the same Sylow subgroup of G generate a
nilpotent group; hence they commute. Conversely, if the Sylow
subgroups are abelian, then a nilpotent subgroup is the product
of its Sylow subgroups and hence is abelian.

Proof of 3 Suppose that E(Nilp(G)) = E(Sol(G)). If G is not
nilpotent, it contains a minimal non-nilpotent subgroup, a
Schmidt group, which is 2-generated and soluble, hence
nilpotent, a contradiction. Conversely, if G is nilpotent, then
Nilp(G) is complete.

Proof of 4 If Com(G) and Sol(G) coincide, then G is nilpotent
with abelian Sylow subgroups, hence is abelian. The converse
is clear.



Dominating vertices

Recall that, if X is a graph type, then ZX(G) is the set of vertices
of X(G) which are joined to all others.

The first part of the following theorem was proved by
Abdollahi and Zarrin, the second by Guralnick et al.

Theorem
For any finite group G,
I ZNilp(G) is the hypercentre of G (the last term in the ascending

central series for G);
I ZSol(G) is the soluble radical of G.

Note that both are subgroups of G.
Now we are all set up for an analysis of these graphs along the
lines we have seen for the lower terms in the hierarchy. But not
much has been done on this, except for universality.
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Universality

We can catch three birds in one net here.

Recall that any graph can be represented as an intersection
graph of a linear hypergraph (two sets corresponding to
adjacent vertices agreeing in one point). Now take the
complement of Γ, represent it in this way, add dummy points
so that each set has the same prime cardinality p > 2, and
replace each set by a cycle with the given set as support.
Two disjoint cycles commute, while two intersecting cycles
generate the alternating group A2p−1, which is not soluble.
Hence we have shown that Γ can be embedded in Com(G),
Nilp(G), and Sol(G), for some group G (the group generated by
all the p-cycles, which is a product of alternating groups).
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Indeed, for p > 3, we can catch another bird.

Assume that the complement of Γ is connected. (This can be
achieved by adding an isolated vertex to Γ if necessary.) Then
the group generated by the cycles is the alternating group on
the union of the supports of the cycles.
Its Schur multiplier has order 2, so the lift of Cp × Cp to the
Schur cover splits, and so disjoint p-cycles are joined in the
deep commuting graph. So we can add DCom(G) to our tally.
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The Engel graph

We define, for each positive integer k, and all x, y ∈ G, the
element [x, ky] of G to be the left-normed commutator of x and k
copies of y; more formally,
I [x, 1y] = [x, y] = x−1y−1xy,
I for k > 1, [x, ky] = [[x, k−1y], y].

Abdollahi defined x and y to be adjacent if [x, ky] 6= 1 and
[y, kx] 6= 1 for all k. To fit with the earlier philosophy I will
redefine it to be the complement of this graph. If we do this
then we have a similar situation to that arising with the power
graph.
We can define the directed Engel graph to have an arc from x to
y if [y, kx] = 1 for some k. Then the Engel graph is the graph in
which x and y are joined if there is an arc from one to the other.
The directed graph may also have a role to play here.
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Zorn showed that, if a finite group G satisfies an Engel identity
[x, ky] = 1 for all x, y (for some k), then G is nilpotent; so the
finite groups for which the directed Engel graph is complete
are the same as those for which the nilpotency graph is
complete. (For infinite groups, this is not true, though the result
has been shown in a number of special cases.)

So there is a close connection between the Engel graph and the
nilpotency graph. But they are not equal in general. For
example, in the group S3, there is an arc of the directed Engel
graph from each element of order 3 to each element of order 2,
but not in the reverse direction.

Question
What can be said about the relation between the Engel and nilpotency
graphs? In particular, in which groups are they equal?
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The Engel centre

Question
Which elements of the group G are joined to all others in the Engel
graph?
I think the answer should be the Fitting subgroup, F(G), the
largest normal nilpotent subgroup of G. It is true that in the
directed Engel graph, if x ∈ F(G), then x→ y for all y ∈ G. For
[y, x] ∈ F(G), and so repeated commutation with x results in the
identity.

But I cannot at present prove the converse.
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More graphs

A wide generalisation has been considered by Lucchini and
Nemmi. Let F be a saturated formation of groups. (A formation
is a class of groups closed under quotients and subdirect
products; the formation F is saturated if G/Φ(G) ∈ F implies
G ∈ F, where Φ(G) is the Frattini subgroup of G. Now the
F -graph of G can be defined by joining x and y if 〈x, y〉 ∈ F.

Their results concern the set of vertices joined to all others in
the F-graph of G (that is, the isolated vertices in the
complement), and the connectedness of the complement apart
from these isolated vertices. However, time precludes my
giving details.
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Automorphisms

Because these graphs are so closely connected with the groups
they live on, you would expect their automorphism groups to
reflect this structure.

If you construct the power graph of A5, and work out the order
of its automorphism group, you come up with the answer

668594111536199848062615552000000.

What is going on??
After removing the identity (which is fixed by all
automorphisms), the graph is a disjoint union of cliques
corresponding to the cyclic subgroups: 15 isolated points, 10
cliques of size 2 and 6 of size 4. So we have a normal subgroup
n fixing all these, with structure S10

2 × S6
4, and the quotient is

S15 × S10 × S6; the product of the orders of these groups is the
number quoted earlier.
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cliques of size 2 and 6 of size 4. So we have a normal subgroup
n fixing all these, with structure S10

2 × S6
4, and the quotient is

S15 × S10 × S6; the product of the orders of these groups is the
number quoted earlier.



The group M11

Here is a more interesting example, the power graph of the
sporadic Mathieu group M11 of order 7920.

If we remove the identity, and then do closed twin reduction,
and then open twin reduction, we reach a twin-free graph, the
cokernel of the reduced power graph. It has 1210 vertices, and
its automorphism group is exactly M11. In fact this graph is
bipartite, and the group acts with four orbits, of sizes 165
(twice), 220 and 660. Lurking in there is a very interesting
bipartite graph with blocks of sizes 165 and 220, having
diameter and girth equal to 10 (and again automorphism group
M11.
It should be said that things are not always so interesting. It
often happens that the original group “gets lost in the noise”.
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General results

To mention a couple of general results that we have seen
implicitly:

Theorem
For each graph type X in the hierarchy, and any non-trivial group G,
the group Aut(X(G)) has a non-trivial (usually large) normal
subgroup which is a direct product of symmetric groups on the twin
classes.

Theorem
The automorphism group of a cograph is built from the trivial group
by the operations of direct product and wreath product with a
symmetric group.
So, if X(G) is a cograph, then G will almost certainly be “lost in
the noise”.
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A question

Question
For which graph types X, and for which groups G, is it true that the
automorphism group of the cokernel of X(G) is equal to the
automorphism group of G?
As noted, this is the case for the power graph of M11.



Infinite groups

There are a number of results about graphs in the hierarchy
defined on infinite groups. I begin with one of the best known.
This theorem was proved by Bernhard Neumann, answering a
question of Paul Erdős.

Theorem
Let G be a group, and suppose that Com(G) contains no infinite
independent set. Then there is a finite upper bound on the size of
independent sets in Com(G).
Neumann formulated the result in terms of cliques in the
non-commuting graph.
I will sketch part of the proof, since is is a nice mixture of group
theory and graph theory.
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Proof.
The proof consists of showing that the hypothesis implies that
Z(G) has finite index in G. Now two elements in the same coset
of Z(G) commute, so an independent set cannot be larger than
|G : Z(G)|.

The assertion follows by group-theoretic argument from the
following claim:

Every conjugacy class in G is finite.

For if not, let g lie in an infinite conjugacy class, and let S be an
infinite set such that the elements s−1gs are all distinct. By
Ramsey’s Theorem, this set contains an infinite clique U. But if
u, v ∈ U, then

[gu, gv] = u−1g−1v−1g−1guxg = (u−1gu)−1(v−1gv) 6= 1,

since u and v commute. But then xU is an infinite independent
set, a contradiction.
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Other graphs

If G is an infinite group for which Pow(G) or EPow(G) has no
infinite independent set, then of course Com(G) has no infinite
independent set, and so Z(G) has finite index in G.

However, the analogue of Neumann’s Theorem fails.
Consider first the group Cp∞ , which can be defined either as the
group of p-power roots of unity in C, or as the group of
rationals with p-power denominator in Q modulo Z. This
group has the property that its subgroups are finite cyclic
groups of p-power order, one for each power of p. So the power
graph is complete.
Incidentally, this shows how far the power graph is from
determining the group in the infinite case: indeed, we cannot
even determine the prime p from the power graph.
The directed power graph does determine the prime, since the
set of elements immediately above the identity in the preorder
has cardinality p− 1.
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Now consider the group G = Cp∞ × Cp∞ . It is not hard to show
that the power graph of G contains no infinite independent set.

However, if ai and bi denote elements of order pi in the two
factors, then the set

{(a0, bn), (a1, bn−1), . . . , (an, b0)}

is an independent set of size n + 1, for any n.
Nevertheless, something can be proved:

Theorem
Let G be an infinite group. Then the following are equivalent:
I Pow(G) has no infinite coclique;
I Z(G) has finite index in G and is a direct sum of finitely many

p-torsion subgroups of finite rank, for primes p.

So G is locally finite, a result of Shitov.
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For the enhanced power graph, Abdollahi and Hassanabadi
proved that the analogue of Neumann’s Theorem does hold:

Theorem
Let G be an infinite group. Then the following are equivalent:
I EPow(G) has no infinite coclique;
I there is a finite upper bound for the size of cocliques in

EPow(G);
I ZEPow(G) has finite index in G.

Recall that ZEPow(G) is a subgroup of G, called the cyclicizer. It
is the set of elements x ∈ G such that, for all y ∈ G, 〈x, y〉 is
cyclic.
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Cliques and colourings

The following striking result holds for the power graph of an
infinite group:

Theorem
The power graph of an infinite group has clique number and
chromatic number at most countable.

Of course there is no such result for the commuting graph,
since there are arbitrarily large abelian groups. We have the
following result for the case where the numbers are finite.
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Theorem
For an infinite group G, the following conditions are equivalent:

I Pow(G) has finite clique number;
I Pow(G) has finite chromatic number;
I EPow(G) has finite clique number;
I EPow(G) has finite chromatic number;
I G is a torsion group with finite exponent.

Proof.
The power graph of an infinite cyclic group 〈g〉 contains an
infinite clique {g2n

: n ≥ 0}. So a group satisfying any of the
first four conditions is a torsion group. Now the results are
proved just as for finite groups.
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Directing the power graph

We saw that the power graph determines the directed power
graph up to isomorphism in the case of a finite group. This fails
for infinite groups: the groups Cp∞ , for primes p, all have power
graph which is countable and complete, but their directed
power graphs are all different.

But the result does hold for torsion-free groups. Indeed, a
theorem of Zahirović shows clearly the important role played
by Cp∞ :

Theorem
Let G and H be infinite groups with Pow(G) ∼= Pow(H). Suppose
that G has no subgroup K ∼= Cp∞ with the property that, for any
cyclic subgroup L of G, either L ≤ K or L∩ K = {1}. Then
DPow(G) ∼= DPow(H).
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Coming up next . . .

So far we have talked only about groups. But there are many
other types of algebraic structures where similar games can be
played.

In some of these, the definitions of the commuting graph,
power graph, and so on, can be adapted almost without
change, but the theory may be quite different.
In other cases, like rings, there are new opportunities for
defining graphs which provide information about the structure:
we will see such graphs as the zero-divisor graph and unit
graph of a ring.
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