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Magmas

Many of our graphs can be defined on structures much more
general than groups. We can’t expect such a rich theory, but
maybe there is something to be said.

I will start with a magma, a set with a binary operation
(without further restriction). (These objects are sometimes
called groupoids, but this term is also used in category theory
for a category with all morphisms invertible, so I will avoid it
here.)
Sometimes I will write the operation as x ◦ y, and sometimes I
will just concatenate, as is usually done for multiplication in a
group.
The definition of the commuting graph of an arbitrary magma
is straightforward. We cannot expect to define, say, the deep
commuting graph. But what about the power graph?
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Power-associative magmas

There are several ways to define powers in a magma. For
example, we could set
I x1 = x;

I xn+1 = (xn) ◦ x for n ≥ 1.
But different definitions (for example, xn+1 = x ◦ (xn)) could
give different results. We define a magma to be
power-associative if the value of xn is independent of the
definition. This can be expressed by the equations

(xm) ◦ (xn) = xm+n for n ∈N.

Now in any magma we could define the directed power graph
by the rule that a→ b if b = an for some n ∈N, and the power
graph by the rule that x ∼ y if either x→ y or y→ x. But this is
not likely to make much sense unless the magma is
power-associative.
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Theorem
In a power-associative magma M,

I the directed power graph is a partial preorder;
I the power graph is the comparability graph of a partial order;
I the power graph is perfect.

The proof is immediate.
Now one of our early theorems about groups asserted that if
two groups have isomorphic power graphs, then they have
isomorphic directed power graphs.

Question
What assumptions on a magma are required for this theorem to hold?
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Quasigroups and loops

The Cayley table of a magma M of order n is the n× n array
with rows and columns indexed by M, having (x, y) entry x ◦ y.
(Note that some people reserve the term “Cayley table” for
groups, and would call this an “operation table”.)

A magma is a quasigroup if it satisfies the left and right
division laws; that is, for any a and b, each of the equations
x ◦ a = b and a ◦ y = b has a unique solution. A quasigroup is a
loop if it has an identity element.
In terms of the Cayley table, a quasigroup is a magma for
which each element occurs once in each row and once in each
column of the Cayley table (in other words, the Cayley table is
a Latin square). If the quasigroup is a loop, and we order it so
that the identity is the first element, then the first row agrees
with the row of column labels, and the first column agrees with
the column of row labels.
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Moufang loops

A group is a loop which satisfies the associative law.

There are two important classes of loops which satisfy a
relaxation of the associative law, and so are more general than
groups: Moufang loops and Bol loops. I will treat Moufang
loops here.
A Moufang loop is a loop satisfying the identity

z(x(zy)) = ((zx)z)y

(or any one of three equivalent identities).

Theorem
In a Moufang loop M,
I if x(yz) = (xy)z, then the subloop generated by x, y, z satisfies

the associative law;
I x(xy) = (xx)y, y(xx) = (yx)x, and (xy)x = x(yx);
I any 2-generated subloop is associative.
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Arguably, Moufang loops are so close to groups that they may
be expected to have some of the properties of groups.

After proving that the power graph of a group determines the
directed power graph up to isomorphism, I conjectured that the
same holds for Moufang loops.
This has very recently been proved by Nick Britten:

Theorem
If M and N are Mougang loops whose power graphs are isomorphic,
then their directed power graphs are isomorphic.
Here is a sketch of the proof. It follows the corresponding proof
for groups. If only the identity is a dominating vertex, the same
argument works.



Arguably, Moufang loops are so close to groups that they may
be expected to have some of the properties of groups.
After proving that the power graph of a group determines the
directed power graph up to isomorphism, I conjectured that the
same holds for Moufang loops.

This has very recently been proved by Nick Britten:

Theorem
If M and N are Mougang loops whose power graphs are isomorphic,
then their directed power graphs are isomorphic.
Here is a sketch of the proof. It follows the corresponding proof
for groups. If only the identity is a dominating vertex, the same
argument works.



Arguably, Moufang loops are so close to groups that they may
be expected to have some of the properties of groups.
After proving that the power graph of a group determines the
directed power graph up to isomorphism, I conjectured that the
same holds for Moufang loops.
This has very recently been proved by Nick Britten:

Theorem
If M and N are Mougang loops whose power graphs are isomorphic,
then their directed power graphs are isomorphic.
Here is a sketch of the proof. It follows the corresponding proof
for groups. If only the identity is a dominating vertex, the same
argument works.



Arguably, Moufang loops are so close to groups that they may
be expected to have some of the properties of groups.
After proving that the power graph of a group determines the
directed power graph up to isomorphism, I conjectured that the
same holds for Moufang loops.
This has very recently been proved by Nick Britten:

Theorem
If M and N are Mougang loops whose power graphs are isomorphic,
then their directed power graphs are isomorphic.

Here is a sketch of the proof. It follows the corresponding proof
for groups. If only the identity is a dominating vertex, the same
argument works.



Arguably, Moufang loops are so close to groups that they may
be expected to have some of the properties of groups.
After proving that the power graph of a group determines the
directed power graph up to isomorphism, I conjectured that the
same holds for Moufang loops.
This has very recently been proved by Nick Britten:

Theorem
If M and N are Mougang loops whose power graphs are isomorphic,
then their directed power graphs are isomorphic.
Here is a sketch of the proof. It follows the corresponding proof
for groups. If only the identity is a dominating vertex, the same
argument works.



In the group case, if the power graph has other dominating
vertices, the group must be cyclic or generalised quaternion. A
generalised quaternion group can be characterised as a group
in which every commutative subgroup is cyclic.

A generalised octonion loop is a non-associative Moufang loop
in which every commutative and associative subloop is cyclic.
A construction due to Chein produces Moufang loops.

Theorem
The following are equivalent for a Moufang loop M:
I M is a generalized octonion loop;
I M is a specific subloop of the unit octonions;
I M is a finite Moufang loop of 2-power exponent with a unique

element of order 2;
I M is produced by Chein’s construction.
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Now let M be a Moufang loop whose power graph has a
dominating vertex.

The proof shows that, if the order of M is not a 2-power, then it
must be a cyclic group; if it is a 2-power, then M is cyclic,
generalised quaternion, or generalised octonion, depending on
whether the largest complete subgraph has size |M|, |M|/2 or
|M|/4.

Question
Can anything similar be done for other classes of loops?
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There is a body of research on special loops, especially
Moufang and Bol loops, which I cannot describe here.

As far as I am aware, the enhanced power graph of a
power-associative loop has not been studied, although the
definition presents no problems.
It is probably true that the deep commuting graph makes little
sense outside the context of groups.
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Semigroups and monoids

The other type of magmas of wide interest is semigroups. A
semigroup is a magma satisfying the associative law
x(yz) = (xy)z. A semigroup with an identity element is a
monoid.

There are various classes of semigroups which resemble groups
to a greater or lesser degree. Perhaps the class which is closest
to groups, and so most likely to give an interesting theory,
consists of inverse semigroups.
An inverse semigroup is a semigroup in which, for each
element x, there is a unique generalised inverse y satisfying
xyx = x and yxy = y. The element y is denoted by x∗.
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Random walks

We saw in the first lecture that the random walk on the
commuting graph of a group (with a loop at every vertex) has
limiting distribution which is uniform on conjugacy classes.

Question
Are there any classes of magmas beyond groups for which the limiting
distribution of the random walk on the commuting graph can be
described in terms of the structure of the magma?
Our proof for groups involved the action of the group on itself
by conjugation. This can be extended to inverse semigroups,
where conjugation by a is the map x 7→ a∗xa, where a∗ is the
quasi-inverse of a.
So inverse semigroups might be candidates for the above
question . . .
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Rings

Once we move on to structures with two binary operations,
there are more opportunities for defining graphs to reflect the
structure.

Recall that a ring has two operations, addition and
multiplication, written in the usual way: the ring forms an
abelian group with the operation + (the identity and inverse of
x are denoted 0 and −x), while multiplication is associative and
distributive over addition. Important classes of rings are
commutative rings and rings with identity (these refer to the
multiplication).
In what follows, “ring” will mean “commutative ring with
identity”.
I will talk about the zero-divisor graph, though other graphs
such as the unit graph have been considered.
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Finite rings

An ideal in a ring R is the kernel of a ring homomorphism.
Thus it is a non-empty subset I closed under addition, with the
property that for any a ∈ I and r ∈ R, we have ar ∈ I.

A ring is local if it has a unique maximal ideal, and semi-local if
it has only finitely many. Clearly a finite ring is semi-local.

Theorem
A finite ring is isomorphic to a direct sum of local rings.
This uses some standard results from ring theory. The radical I
of a finite ring R is nilpotent, and hence R is complete in the
I-adic topology.
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The zero-divisor graph

An element a of a ring R is a zero-divisor if a 6= 0 and there
exists b ∈ R with b 6= 0 such that ab = 0.

The zero-divisor graph of R has vertex set the set of
zero-divisors in R, with a and b joined if ab = 0.
For example, in the ring Z/(6) of integers mod 6, the
zero-divisors are 2, 3, 4, and the zero-divisor graph is a 3-vertex
path.
This graph was introduced by Anderson and Livingston in
1999.
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Universality

Theorem
Every finite graph is an induced subgraph of the zero-divisor graph of
a finite ring.

Proof.
We use Boolean rings: the elements are all subsets of a set X,
with symmetric difference for addition and intersection for
multiplication. Now ab = 0 if and only if a and b are disjoint. So
if we represent the given graph as an intersection graph, it is
naturally embedded in the zero-divisor graph of a Boolean
ring.
I am grateful to G. Arun Kumar for this proof.
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Local rings

In a finite ring, every non-zero element is either a zero-divisor
or invertible. (If multiplication by a is not injective, then a is a
zero-divisor; if it is surjective, then a is a unit.) So in a local
ring, the zero-divisors are the non-zero elements of the
maximal ideal.

Question
Are the zero-divisor graphs of local rings universal (in the previous
sense)?
The answer is negative in one special case.
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An ideal of a ring is principal if it is generated by a single
element.

Theorem
If R is a finite local ring whose maximal ideal is principal, then the
zero-divisor graph of R is a threshold graph.

Proof.
Let m generate the maximal ideal. Then every element of R has
the form umi, where u is a unit. There is a minimum i such that
mi = 0, say i = k; then umi is joined to vmj if and only if
i + j ≥ k. So the zero-divisor graph is a threshold graph.
However, not all finite local rings have their maximal ideals
principal, and the zero-divisor graph is not always a threshold
graph. (I am grateful to T. Kavaskar for an example.) The
question above remains unanswered.
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. . . for lasting to the end of the course.

I hope you have enough information now to begin tackling
some of the open questions I have mentioned.
Take a look at my paper on this topic in the International Journal
of Group Theory, which you can download from

https://ijgt.ui.ac.ir/article_25608.html

This paper also contains an extensive bibliography.

Please tell me about anything you manage to find!
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