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Plan

The Gruenberg–Kegel graph of a finite group G has as vertices
the set of prime divisors of the order of G, with an edge from p
to q if and only if G contains an element of order pq. It was
introduced for the study of the group ring of G.
There are a number of graphs which have been studied, whose
vertex set is G, going back to the commuting graph introduced
by Brauer and Fowler in their classic paper of 1955. Others
include the power graph, and more recently the enhanced
power graph and the deep commuting graph.
It turns out that the (very small) Gruenberg–Kegel graph
carries a lot of information about the (much larger) graphs on
the group G; this is the topic I will be exploring.



Outline
After introducing the four graphs to be considered, I will
discuss four topics:
I If two groups G and H have isomorphic commuting

graphs (or indeed any of the other types), then they have
the same GK graph.

I If Z(G) = 1, then the reduced commuting graph of G (the
induced subgraph of the commuting graph on the
non-identity elements of G) is connected if and only if the
GK graph is connected.

I The enhanced power graph is equal to the power graph if
and only if the GK graph has no edges. Such groups can be
determined.

I There is a necessary condition, and a sufficient condition,
in terms of the GK graph for the power graph of G to be a
cograph; but there is no necessary and sufficient condition
in these terms. Moreover, even for the groups PSL(2, q),
this leads to difficult number-theoretic questions.



The Gruenberg–Kegel graph

I knew Karl Gruenberg well. He was my colleague at Queen
Mary, University of London, from the time I moved there in
1986 until his death in 2007. His main work was in the
cohomology and integral representation of groups. It is a
pleasure for me to remember him in this talk.
I was less well acquainted with Otto Kegel, but he visited
Oxford once a week for a term when I was a student there to
lecture on locally finite groups. I guess this was when he was
visiting Bert Wehrfritz and they were writing a book on them.



The Gruenberg–Kegel graph, sometimes called the prime
graph, of a finite group G was introduced by Gruenberg and
Kegel in an unpublished manuscript in 1975. They were
concerned with the decomposability of the augmentation ideal
of the integral group ring of G.
The vertex set of the graph is the set of prime divisors of the
order of G (equivalently, by Cauchy’s theorem, the set of orders
of elements of prime order in G). It has an edge joining p and q
if and only if G contains an element of order pq (equivalently,
there are commuting elements of orders p and q).
Their main theorem was a characterisation of groups whose
GK graph is disconnected. The result was subsequently
published by Williams (a student of Gruenberg) in 1981.



The Gruenberg–Kegel graph has received a lot of attention
since Williams’ paper. Natalia Maslova and others in this
session will tell you more about its properties.
The number of prime divisors of |G| is very much smaller than
the order of G. I will be concerned with several graphs defined
to have vertex set G and various joining rules reflecting the
algebraic structure of G. So these graphs are much larger than
the GK graph. Nevertheless, a surprising amount of their
structure is determined by the GK graph.
This is the subject of my talk. I will introduce four particular
graphs that I will speak about, and present results connecting
the GK graph of a group G with one of these four defined on G.



Dramatis Personae, 1: the commuting graph
The commuting graph was the first of the four to be defined; it
appeared in the famous paper of Brauer and Fowler on
centralisers of involutions in finite groups in 1955.
The commuting graph of G has vertex set G; vertices g and h are
joined if and only if gh = hg. (This definition would put a loop
at every vertex; we silently suppress these.)
Here are the commuting graphs of the two non-abelian groups
of order 8: D8 = 〈a, b : a4 = 1, b2 = 1, b−1ab = a−1〉 and
Q8 = 〈a, b : a4 = 1, b2 = a2, b−1ab = a−1〉.
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Dramatis Personae, 2: the power graph

Next on the scene, much later, was the power graph, defined by
Kelarev and Quinn in 1999.
The directed power graph of G has vertex set G; there is an arc
from g to h if h is a power of g. Again we ignore loops. The
power graph of G is obtained by ignoring the directions on the
arcs (and suppressing one of them if each of g and h is a power
of the other); in other words, g and h are joined if one is a
power of the other.
The power graph does not uniquely determine the directions;
but it is known that if two groups have isomorphic power
graphs, then they have isomorphic directed power graphs.
The graph shown earlier is the power graph of Q8, but not of
D8.



Dramatis Personae, 3: the enhanced power graph

The enhanced power graph is more recent. The complementary
graph was defined by Abdollahi and Hassanabadi in 2007
under the name “noncyclic graph”; I will use the description
appearing in a paper of Aalipour et al. in 2017.
The enhanced power graph has vertex set G; we join g to h if
and only if there is an element k such that both g and h are
powers of k. Equivalently, g and h are joined if and only if 〈g, h〉
is cyclic.
We saw that the power graph determines (up to isomorphism)
the directed power graph, and hence the enhanced power
graph. The converse is also true; if two graphs have isomorphic
enhanced power graphs, then they have isomorphic power
graphs.



Dramatis Personae, 4: the deep commuting graph

The final actor, the deep commuting graph, is not yet
published, but can be found in a paper by Bojan Kuzma and
me on the arXiv.
The deep commuting graph has vertex set G; vertices g and h
are joined if and only if their inverse images in every central
extension of G commute. (That is, if Z 6 Z(H) with H/Z ∼= G,
and aZ and bZ are the cosets of Z corresponding to g and h, then
we require that a and b commute (in every such extension).
We showed that it suffices to take a single central extension of
G, namely a Schur cover (where Z 6 Z(H) ∩H′ and subject to
this Z is as large as possible). It is independent of the choice of
Schur cover.
For example, the Klein group of order 4 has two Schur covers,
the dihedral and quaternion groups of order 8; so the deep
commuting graph of V4 is the star K1,3.



The hierarchy

The four graphs defined in this way on G form a hierarchy, in
the order power graph, enhanced power graph, deep
commuting graph, commuting graph, in the sense that the edge
set of each is contained in the edge set of the next.
This is clear in all cases except the enhanced power graph and
deep commuting graph. So suppose that {g, h} is an edge of the
enhanced power graph, so that 〈g, h〉 = 〈k〉 for some k. Now let
H be a central extension of G with kernel Z. Let a, b, c be
representatives of the cosets of Z in H corresponding to g, h, k.
Then 〈Z, a, b〉 = 〈Z, c〉, which (as a cyclic extension of a central
subgroup) is abelian; so a and b commute.
One further observation: for each type Γ in the hierarchy, Γ(G)
is invariant under the automorphism group of G.



Graphs in the hierarchy determine the GK graph

Theorem
Let Γ(G) denote one of the four types of graph in the hierarchy. If G
and H are groups with Γ(G) ∼= Γ(H), then the Gruenberg–Kegel
graphs of G and H are equal.

Proof.
Consider first the enhanced power graph or the commuting
graph. A maximal clique in one of these graphs is a maximal
cyclic (resp. abelian) subgroup of G. So p and q are joined in the
GK graph if and only if there is a maximal clique of the graph
having order divisible by pq.
A similar but slightly more elaborate proof works for the deep
commuting graph.
Finally, we saw that if the power graphs of G and H are
isomorphic, then so are the enhanced power graphs.



Connectedness

One of the most studied questions about the commuting graph,
going back to the Brauer–Fowler paper, is connectedness.
Of course the commuting graph of G is connected, since any
element of the centre is joined to all other elements of the
group. So it makes sense to define the reduced commuting
graph of G to be the induced subgraph of the commuting graph
on G \ Z(G).
Much is known about this, which I will not describe here. I
want just to mention one result which fits my theme.

Theorem
Let G be a finite group with Z(G) = 1. Then the reduced commuting
graph of G is connected if and only if the Gruenberg–Kegel graph of G
is connected.



Equality

Since our four graphs on G form a hierarchy, a natural question
is:

Question
For which groups G do a pair of graphs from the hierarchy on G
coincide?
At least partial results on all of these (4

2) = 6 questions are
known. My interest here is in graphs for which the power
graph and enhanced power graph coincide.



EPPO groups

An EPPO group is a group in which every element has prime
power order. There has been a lot of work on these, and it is a
pleasure to mention some of my former colleagues in Oxford:
Graham Higman, Patrick Martineau and Brian Stewart.

Theorem
For a finite group G, the following three conditions are equivalent:
I G is an EPPO group;
I the Gruenberg–Kegel graph of G has no edges;
I the power graph of G is equal to the enhanced power graph.



The proof

Equivalence of the first two conditions is immediate from the
definition.
If two elements have prime power order and generate a cyclic
group, then one of them is a power of the other. So in an EPPO
group, the power graph and enhanced power graph are equal.
Conversely, if G is not an EPPO group, then it has an element
which is not of prime power order; some power of this element
has order a power of two primes, and so gives an edge in the
GK graph.

On the next slide, π(G) is the set of prime divisors of |G|. The
theorem (in my paper with Natalia Maslova) is the culmination
of work on this problem.



The classification

Theorem
An EPPO group G satisfies one of the following:

I |π(G)| = 1 and G is a p-group.

I |π(G)| = 2 and G is a solvable Frobenius or 2-Frobenius group.

I |π(G)| = 3 and G ∈ {A6, PSL2(7), PSL2(17), M10}.
I |π(G)| = 3, G/O2(G) is PSL2(2n) for n ∈ {2, 3} and if

O2(G) 6= {1}, then O2(G) is the direct product of minimal normal
subgroups of G, each of which is of order 22n and as a
G/O2(G)-module is isomorphic to the natural GF(2n)SL(2n)-module.

I |π(G)| = 4 and G ∼= PSL3(4).

I |π(G)| = 4, G/O2(G) is Sz(2n) for n ∈ {3, 5}, and if O2(G) 6= {1},
then O2(G) is the direct product of minimal normal subgroups of G,
each of which is of order 24n and as a G/O2(G)-module is isomorphic
to the natural GF(2n) Sz(2n)-module of dimension 4.



Cographs

A finite graph Γ is a cograph if it has no induced subgraph
isomorphic to the 4-vertex path. Since this graph is
self-complementary, the complement of a cograph is a cograph.
Here are a few properties of cographs:

Theorem
I If a cograph on more than one vertex is connected, then its

complement is disconnected.
I Cographs form the smallest non-empty class of graphs which is

closed under the operations of complement and disjoint union; so
every cograph can be built from the 1-vertex graph by these
operations.

I The automorphism group of a cograph can be built from the
trivial group by the operations “direct product” and “wreath
product with a symmetric group”.



Twins and twin reduction

Two vertices in a finite graph Γ are twins if they have the same
neighbours (possibly excepting one another).
Being twins is an equivalence relation; the automorphism
group of the graph has a normal subgroup acting as the
symmetric group on each twin class.
If we collapse a pair of twins to a single vertex, and continue
this until there are no more pairs of twins, the result (which I
will call the cokernel of the graph) is independent of the
sequence of reductions.

Theorem
Γ is a cograph if and only if its cokernel is the 1-vertex graph.



Graphs in the hierarchy always have twins

Theorem
For each of the types X of graph introduced earlier, if G is a
non-trivial group, then X(G) has non-trivial twin relation.

Proof.
If g is an element of G with order m > 2, and gcd(m, d) = 1,
then g and gd are closed twins (i.e. have the same closed
neighbourhood).
The only case remaining is that when G is an elementary
abelian 2-group, in which case X(G) is either complete (for the
commuting graph) or a star (for the others).
So if you are interested in the automorphism group, you might
first want to carry out twin reduction. Of course, if the graph is
a cograph, the result will be the trivial graph . . .



When is the power graph a cograph?

For any of the four types of graph in our hierarchy, and any
group G of order greater than 1, the corresponding graph on G
has non-trivial twin relation. For, if g is an element of order
m > 2, and d is coprime to m, then g and gd are twins. In the
excluded case, G is an elementary abelian 2-group; this is easily
dealt with.
So we can apply twin reduction, and it is of some interest to
know whether we reach the 1-vertex graph (in other words,
whether the graph is a cograph).
In the remainder of the talk, I will consider this for the power
graph. I will give a necessary condition, and a sufficient
condition, for the power graph to be a cograph, in terms of the
GK graph of G.



Power graph and GK graph

Theorem
I Suppose that all connected components of the GK graph are

singletons (that is, G is an EPPO group). Then the power graph
of G is a cograph.

I Suppose that G is non-solvable, and that the power graph of G is
a cograph. Then every connected component of the GK graph of
G except possibly the component containing the prime 2 has size
at most 2.

There is no necessary and sufficient condition just in terms of
the GK graph. For the groups PSL(2, 11) and M11 have the
same GK-graph; the power graph of the first is a cograph, but
the power graph of the second is not (its cokernel has 1212
vertices and automorphism group M11).



What happens for PSL(2, q)?

Theorem
For a prime power q, let l and m be q− 1 and q + 1 if q is even, or
(q− 1)/2 and (q + 1)/2 if q is odd. Then the power graph of
G = PSL(2, q) is a cograph if and only if each of l and m are either a
prime power or a product of two distinct primes.

Question
Are there infinitely many prime powers q for which the power graph
of PSL(2, q) is a cograph?
This is probably quite a hard number-theoretic problem.
The values of d up to 200 for which the conditions of the
theorem hold for q = 2d are 1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 31,
61, 101, 127, 167, 199.



Other simple groups

The table on the next slide gives the sizes of cokernels of
various graphs defined on the first few finite non-abelian
simple groups G by order.
I have added in one further graph, the non-generating graph,
in which g and h are joined if and only if 〈g, h〉 6= G. Since G is
2-generated, this graph is not complete; since G is not abelian,
its edge set contains the edge set of the commuting graph of G.
Recall that a graph is a cograph if and only if its cokernel has 1
vertex.

Question
For the various types Γ of graph, for which simple groups G is Γ(G) a
cograph?



G |G| Power E-Power D-Com Com N-Gen
A5 60 1 1 1 1 32

PSL(2, 7) 168 1 1 1 44 79
A6 360 1 1 1 92 167

PSL(2, 8) 504 1 1 1 1 128
PSL(2, 11) 660 1 1 1 112 244
PSL(2, 13) 1092 1 1 1 184 366
PSL(2, 17) 2448 1 1 1 308 750

A7 2520 352 352 352 352 842
PSL(2, 19) 3420 1 1 1 344 914
PSL(2, 16) 4080 1 1 1 1 784
PSL(3, 3) 5616 756 756 808 808 1562
PSU(3, 3) 6048 786 534 499 499 1346
PSL(2, 23) 6072 1267 1 1 508 1313
PSL(2, 25) 7800 1627 1 1 652 1757

M11 7920 1212 1212 1212 1212 2444



The table suggests various conjectures, some of which can be
proved. For example:

Theorem
The non-generating graph of a non-abelian finite simple group is not
a cograph.

Proof.
The results of a number of authors show that the reduced
non-generating graph (with the identity removed) and its
complement are both connected, with small diameter.

Question
Find, or estimate, the number of vertices in the cokernel of the
non-generating graph of a finite simple group.
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for your attention. Stay well!
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