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An analogy

If you know any projective geometry, you will know the
following fact:

Two-dimensional geometries are projective planes and
exist in great profusion. But in higher dimension, the
geometries are coordinatised by an algebraic object (a
division ring), and there is just one geometry for each
dimension and each coordinatising algebra.

I am going to tell you a very similar story, for which a similar
statement holds:
I In place of “projective planes” we put “Latin squares”.
I In place of “division ring” we put “group”.
I The role of Desargues’ Theorem is taken by the quadrangle

condition, defined by Frolov in 1890.



Diagonal groups

The other motivation for this work was to provide geometries
for the “diagonal groups”, one of the classes in the celebrated
O’Nan–Scott Theorem.
According to this theorem, a finite primitive permutation
group is of one of four types: affine, Cartesian, diagonal, or
almost simple.
Affine groups act on affine spaces, and Cartesian groups on
Cartesian lattices (which will be defined shortly); no uniform
description of geometry for the almost simple groups is
possible. But what about diagonal groups?
The diagonal groups in this theorem are built from finite simple
groups; but we remove both assumptions. Our groups are
completely arbitrary, finite or infinite, simple or not.
This is joint work with Rosemary Bailey, Cheryl Praeger and
Csaba Schneider.



Diagonal groups defined

Let m be a positive integer and T a group, finite or infinite. I define
the diagonal group D(T, m) to be the group of permutations of
Ω = Tm generated by the following transformations. (I put the
elements of Ω in square brackets to distinguish them from group
elements.)

I The group Tm acting by right multiplication.

I another copy T0 of T acting by simultaneous left multiplication
of all coordinates by the inverse.

I Aut(T) acting in the same way on all coordinates.

I Sm acting by permuting the coordinates.

I An element τ:

[t1, t2, . . . , tm] 7→ [t−1
1 , t−1

1 t2, . . . , t−1
1 tm].

Don’t remember the details: this is just a group built from T and m.



Partitions and the partition lattice

Our geometry will be defined in terms of partitions. So here is a
brief introduction.
The set P(Ω) of partitions of Ω is partially ordered by
refinement: P 4 Q if every part of P is contained in a part of Q.
With this order, P(Ω) is a lattice: any two partitions P and Q
have a unique infimum or meet P∧Q, and a unique supremum
or join P∨Q.
I P∧Q is the partition of Ω whose parts are all non-empty

intersections of a part of P and a part of Q.
I P∨Q is the partition into connected components of the

graph in which two points are adjacent if they lie in the
same part of either P or Q.

A subset of P(Ω) is a lattice if it is closed under the meet and
join operations of P(Ω); it is a join-semilattice, closed under
join but maybe not under meet.



Cartesian lattices

The Boolean lattice Bn is the lattice of all subsets of {1, . . . , n}.
Let A be an alphabet, finite or infinite (with |A| > 1). Let
Ω = An be the set of all words of length n over the alphabet A.
For I ⊆ {1, . . . , n}, let QI be the partition of Ω corresponding to
the equivalence relation ≡I, where

(a1, . . . , an) ≡I (b1, . . . , bn)⇔ (∀j /∈ I)(aj = bj).

Now the partitions QI for I ⊆ {1, . . . , n} form a sublattice of the
partition lattice on Ω which is isomorphic to Bn by the map
I 7→ QI.
I will call this a Cartesian lattice. Note that the group of
permutations of Ω mapping the lattice to itself (as set of
partitions) is the wreath product Sym(A) Wr Sym({1, . . . , n}).



Latin squares, 1

You probably think of a Latin square as something like this: a
square array of size n× n filled with letters from an alphabet of
size n, so that each letter occurs once in each row and column.

A B C
B C A
C A B

Latin squares exist in great profusion. There are more than
exp(m2) Latin squares of order m; exact numbers are only
known up to m = 11.
We are going to give a different definition. Let Ω consist of the
n2 cells of the array. We have three partitions of Ω: R, the rows;
C, the columns; and L, the letters (the partition into sets of cells
containing the same letter).



Latin squares, 2

A B C
B C A
C A B

1 2 3
4 5 6
7 8 9

I R = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
I C = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}};
I L = {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}.

Together with E (the partition into singletons) and U (the
partition with a single part), these three partitions form a
lattice. It has the very special property that, if one of R, C, L is
omitted, the resulting four partitions form a Cartesian lattice
on Ω.
This property characterises Latin squares.



Latin squares, 3

With the partition definition, we could define an
automorphism of a Latin square to be a permutation of Ω
fixing {R, C, L} setwise. (These mappings are usually called
paratopisms in the Latin squares literature.)
However, one case is interesting to us: the Cayley table of a
group T is a Latin square, and its paratopism group is the
diagonal group D(T, 2) defined earlier. (This fact is maybe not
as well known as it should be!)



Diagonal semilattices

Let us return to diagonal groups for a moment. Recall that
D(T, m) acts on Tm, where m copies T1, . . . , Tm of T act on the
corresponding coordinate of Tm by right multiplication, while
the last factor T0 acts by simultaneous left multiplication by the
inverse.
Let Q0, . . . , Qm be the orbit partitions of Ω = Tm corresponding
to these groups. Thinking of Tm as a group, these are the coset
partitions of the coordinate groups T1, . . . , Tm and the diagonal
subgroup of Tm (hence the name).
The join-semilattice generated by Q0, . . . , Qm (it is not a lattice
for m > 3) is an object which we will call a diagonal semilattice
and denote by D(T, m).

Theorem
The automorphism group of D(T, m) is the diagonal group D(T, m).



The main theorem

Theorem
Let m > 2, and let Q0, Q1, . . . , Qm be partitions of Ω. Suppose that
any m of these partitions are the minimal non-trivial elements in an
m-dimensional Cartesian lattice on Ω.
I If m = 2, then {Q0, Q1, Q2}, together with E and U, form a

Latin square, unique up to isotopism; every Latin square arises
in this way.

I If m > 3, then there is a group T, determined up to isomorphism,
such that the join-semilattice generated by {Q0, . . . , Qm} is the
diagonal semilattice D(T, m).

As promised, for m = 2 the situation is chaotic, but for m > 3
the algebraic structure coordinatising the semilattice (the group
T) emerges naturally from the combinatorics.



A word about the proof

The proof is by induction on m. For m = 2, there is nothing to
prove; and the general case follows by induction from the case
m = 3. That is where the real work lies!
For m = 3, we have four partitions Q0, . . . , Q3. For any i, the
three partitions Qi ∨Qj (for j 6= i) define a Latin square on the
set of parts of Qi. We have to show:
I All four Latin squares are isotopic.
I One of them satisfies the quadrangle condition, and so is

isotopic to the Cayley table of a group, by Frolov’s
theorem.

I By a theorem of Albert, all the groups are isomorphic, and
the partitions form a diagonal semilattice D(T, 3).



The diagonal graph

Let D(T, m) be a diagonal structure, with m ≥ 2. Form a graph
Γ(T, m) on Ω by joining two points if they lie together in a part
of one of the minimal partitions Qi.
Note that this construction applied to the Cartesian lattice gives
the famous Hamming graph.
I For m = 2, the diagonal graph is the strongly regular Latin

square graph associated with the Latin square.
I For |T| = 2, it is the distance-transitive folded cube graph.

In other cases, it is not distance-regular, but is still a very nice
graph whose automorphism group is the diagonal group
(except in a couple of small cases).



The diagonal graph, 2

We have computed the spectrum of the diagonal graph, using
Möbius inversion.
We also have some information about its chromatic number,
which turns out to be related to the Hall–Paige conjecture and
synchronizing automata. Note that the clique number is |T| in
general: the parts of the partitions Qi are the mimimal cliques.

Proposition

If m is odd, or if |T| is odd, or if the Sylow 2-subgroups of T are not
cyclic, then the chromatic number of Γ(T, m) is equal to |T|.
We conjecture that in the excluded case, the chromatic number
is equal to |T|+ 2. This is true if T ∼= C2 (the non-bipartite
folded cubes have chromatic number 4) and if m = 2 and
T ∼= C4 (the complement of the Shrikhande graph has
chromatic number 6).



Synchronizing automata

An automaton is a very simple machine: it has a set Ω of
internal states; when it reads a letter from its alphabet A, it
changes state in a deterministic fashion.
It can read a word, and undergo a sequence of transitions. So
the set of possible transitions is closed under composition, and
contains the identity: it is a monoid. So an automaton is
equivalent to a transformation monoid with a fixed generating
set.
An automaton is synchronizing if there is a word (called a reset
word) such that, when the automaton reads that word, it ends
in a fixed state, independent of its starting state.
The Černý conjecture (still open after 60 years) asserts that, if
an n-state automaton is synchronizing, then it has a reset word
of length at most (n− 1)2.



Synchronizing permutation groups

A transformation monoid is synchronizing if it contains a
transformation of rank 1 (that is, one whose image is a
singleton).
Clearly a permutation group of degree greater than 1 cannot be
synchronizing in this sense. So we abuse language and say that
a permutation group G on Ω is synchronizing if and only if, for
any non-permutation f on Ω, the monoid 〈G, f 〉 is
synchronizing.
It is known that a permutation group is non-synchronizing if
and only if it is contained in the automorphism group of a
graph with clique number equal to chromatic number.



It is known that a synchronizing permutation group must be
primitive, and hence (by O’Nan–Scott) affine, wreath product,
diagonal, or almost simple.
Wreath products preserve Hamming graphs, and so are
non-synchronizing. For the other three types, both
synchronizing and non-synchronizing groups exist.
However, we can say more in the diagonal case. If the diagonal
group D(T, m) is primitive, then T is simple, and so its Sylow
2-subgroups cannot be non-trivial cyclic groups (by Burnside’s
transfer theorem); so, if m ≥ 2, then D(T, m) is
non-synchonizing. So in this case, synchronizing groups can
arise only for m = 1.


