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Graphs and groups

Graphs and groups represent very contrasting parts of the
mathematical universe.
Groups measure symmetry; they are highly structured, elegant
objects.
Graphs, on the other hand, are “wild”: we can put in edges
however we please. Some graphs are beautiful, but most are
scruffy.

Nevertheless, they have a lot to say to one another.



The Petersen graph

The Petersen graph is a rare example of a beautiful finite graph.
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Groups

According to the Jordan–Hölder Theorem, any finite group is
constructed from finite simple groups by an extension process.
The Classification Theorem for Finite Simple Groups says we
know the simple groups. While the extension process is still
somewhat mysterious, we can estimate the number of groups
of order n reasonably well. Prime power orders are the most
prolific, and to a first approximation the number of groups of
order pm is p(2/27)m3

.
Infinite groups are a different matter; there is no notion of a
“typical” infinite group, and we have to impose some kind of
finiteness condition in order to get anywhere (finitely
generated or presented, locally finite, profinite, etc.)



Graphs

Thinking of all possible graphs that can be drawn on a given
vertex set, not only are there very many (about 2n(n−1)/2/n! on
n vertices), but almost all have no symmetry, and the more
symmetric a graph is, the fewer copies there are to find.
For infinite vertex sets, we would expect things to be worse.
But, surprisingly, the following holds:

Theorem
On a countable vertex set, almost all graphs are isomorphic, in either
of two senses: there is a graph R such that
I choosing edges independently with probability 1

2 , the result is
almost surely isomorphic to R;

I there is a complete metric space structure on the set of graphs,
and a comeagre subset of the graphs are isomorphic to R.



First conversation: Sporadic simple groups

On 3 September 1967, Donald Higman and Charles Sims were
at a group theory conference in Oxford. Marshall Hall had just
announced the construction of the simple group discovered by
Zvonimir Janko, as a permutation group on 100 points. At the
conference dinner, Higman and Sims wondered whether there
might be another sporadic simple group which was also a
permutation group on 100 points. By the end of the evening
they had found one.



R. D. Carmichael had constructed in 1931, and Ernst Witt
proved unique in 1938, a configuration with 22 points and 77
blocks whose automorphism group contained the Mathieu
group M22 as a subgroup of index 2. Higman and Sims built a
graph from Witt’s design. The vertex set consisted of the points
and the blocks and one additional point ∗; the edges were
given by three simple rules:
I ∗ is joined to all points;
I a point and block are joined if they are incident;
I two blocks are joined if they are disjoint (no point is

incident to both).
Now they had to show that the graph looks the same from any
point; this follows from standard properties and uniqueness of
the design. It follows that its automorphism group is transitive,
and contains a (new) simple group as a subgroup of index 2.



Historical note

It turned out that Dale Mesner, working in combinatorics and
statistics, had constructed this graph more than ten years
earlier. He had defined a class of graphs he called ”negative
Latin square graphs”, and constructed this graph as an
example.
He was unaware of the work of Carmichael and Witt, so had to
work much harder; and he was not a group theorist, and didn’t
think to consider its automorphism group.



Counting

“I count a lot of things that there’s no
need to count,” Cameron said. “Just
because that’s the way I am. But I
count all the things that need to be
counted.”

Richard Brautigan, The Hawkline
Monster: A Gothic Western



Second conversation: Orbital chromatic number

Look at the Petersen graph again.
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In how many ways can I colour it with q colours, so that
adjacent vertices get different colours?
The answer is a monic polynomial in q whose degree is equal to
the number of vertices. This is the chromatic polynomial of the
graph.



The chromatic polynomial

The chromatic polynomial of a graph was introduced by
Birkhoff as a tool to prove the (then) conjecture that planar
graphs can be coloured with four colours: in other words, the
chromatic polynomial PΓ of a planar graph Γ does not have 4 as
a root.
His attempt was unsuccessful, and the proof of the Four-Colour
Conjecture required quite different methods.
But it is still of great interest. Not so long ago, Alan Sokal
overturned a long-standing conjecture by proving that
(complex) roots of chromatic polynomials of graphs are dense
in the complex plane. This result is related to the Lee–Yang
theory of phase transitions in the Potts model in statistical
mechanics.



Back to the Petersen graph

A polynomial of degree 10 grows quite rapidly. Indeed, the
Petersen graph has 2055598560 colourings with 10 colours.
For some applications such as radio frequency allocation, we
don’t care about the actual colourings; only the partitions into
colour classes are useful. Can we find this number?
Yes: the parts of a partition are all non-empty, so the first job is
to count the colourings in which all colours are actually used.
This is a job for the Inclusion-Exclusion Principle. Having
found the answer, we simply divide by q! to give the number of
partitions.



Up to symmetry

Another approach would be to say that the Petersen graph has
a lot of symmetry (indeed, its automorphism group has order
120 and is isomorphic to the symmetric group S5), and we
don’t want to count colourings as distinct if they are related by
an automorphism of the graph.
There is another polynomial that does this job, the orbital
chromatic polynomial. This takes account of both the graph
and the group of automorphisms. (We are not constrained to
use all the automorphisms if a subgroup is more convenient.) It
is a polynomial whose degree is the number of vertices, and
whose leading coefficient is 1/|G|, where G is the group of
automorphisms being used.
What if we want to combine the two approaches, and count
colour partitions up to the action of an automorphism group?
Finding a formula for this is an unsolved problem. It can be
worked out by brute-force computation.



The table below gives results for the Petersen graph. The first
row gives the number of colourings (the evaluation of the
chromatic polynomial). The second gives the number of
partitions into colour classes. The third gives the number of
colourings up to the action of the full automorphism group,
and the fourth the number of partitions up to the action of the
automorphism group.

q 3 4 5 6 7 8 9 10
120 12960 332880 3868080 27767880 144278400 594347040 2055598560
20 520 2244 2865 1435 315 30 1
6 208 3624 36654 248234 1254120 5089392 17449788
1 10 30 36 20 7 1 1

I contend that the last row is in some sense the most
meaningful. I would very much like to have a formula for it!



Third conversation: Synchronizing automata

For this, I must turn first to automata and semigroups.
An automaton is a machine which has a set Ω of states, and can
read symbols from an alphabet A. It is a very simple machine:
all it does at a given time step is to read a symbol and change
its state.
An automaton can read a word or sequence of symbols; each
symbol causes a state change.
An automaton is synchronizing if there is a word, called a reset
word, such that when the automaton reads this word, it ends
up in a fixed state, no matter where it starts.
Reset words are useful to bring a machine into a known state
before applying further transformations to it.



An infamous problem

Here is a synchronizing automaton.
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It can be verified that BRRRBRRRB is a reset word (and indeed
that it is the shortest possible reset word for this automaton).

Problem
Show that, if an n-state automaton is synchronizing, it has a reset
word of length at most (n− 1)2.
This is the Černý conjecture, posed in the 1960s and still open.



Transformation monoids

The Černý conjecture seems to have nothing to do with either
graphs or groups; but wait . . .
Each letter of the alphabet corresponds to a transition on the set
Ω of states. Reading a word corresponds to composing the
transitions. So the set of all possible transitions is closed under
composition and contains the identity map (corresponding to
the empty word): so

An automaton can be represented as a transformation
monoid on the set Ω of states, having a distinguished
set of generators.

So the Černý conjecture is a question about transformation
monoids.



Graphs

An endomorphism of a graph is a map from the vertex set to
itself which carries edges to edges. The action on nonedges is
not specified; a nonedge may map to a nonedge, or to an edge,
or collapse to a single vertex.
The endomorphisms of a graph form a transformation monoid.
Now we have a pleasant surprise:

Theorem
A transformation monoid M is non-synchronizing if and only if there
is a non-trivial graph Γ on the domain such that M is contained in the
endomorphism monoid of Γ. Moreover, we can assume that the clique
number and chromatic number of Γ are equal.
A graph is trivial if it is complete (all possible edges) or null (no
edges at all). The clique number is the number of vertices in the
largest complete subgraph, while the chromatic number is the
number of colours required to colour the vertices so that
adjacent vertices get different colours.



Groups

A permutation group is a transformation monoid in which
every element is a bijection. Permutation groups form the
oldest part of group theory, going back to the work of Galois or
earlier.
A permutation group cannot be synchronizing as a
transformation monoid (unless the domain has just one point).
So we hijack the word for a different use:
The permutation group G on Ω is synchronizing if, for every
non-permutation f of Ω, the transformation monoid 〈G, f 〉
generated by G and f is synchronizing.

Theorem
The permutation group G is non-synchronizing if and only if it is
contained in the automorphism group of a non-trivial graph on Ω,
which can be taken to have clique number equal to chromatic number.



Which permutation groups are synchronizing?

A long-running project aims to answer this question. Here is a
summary of what we know.
A synchronizing permutation group G on Ω must be transitive
(no non-trivial subset of Ω is fixed by G) and primitive (no
non-trivial partition of Ω is fixed by G).
According to the O’Nan–Scott Theorem, a finite primitive
permutation group is of one of four types: affine, wreath
product, diagonal, or almost simple.
Wreath products preserve Hamming graphs, coming from the
theory of error-correcting codes; they have clique number equal
to chromatic number and so are non-synchronizing.
For all the other types, there are both synchronizing and
non-synchronizing groups. But recently, using the truth of the
Hall–Paige conjecture from the theory of Latin squares, it has
been shown that only the easiest type of diagonal group could
possibly be synchronizing, essentially those of the form T× T
acting on T by left and right multiplication.



Two historical oddities

The O’Nan–Scott Theorem was proved independently by
Michael O’Nan and Leonard Scott in 1979. The Classification of
Finite Simple Groups was imminent, and it provides a machine
for applying this result to many problems in permutation
group theory and beyond. However, much of the theorem was
already in Jordan’s work from 1872, and had been forgotten.
The Hall–Paige conjecture gives a necessary and sufficient
condition for the Cayley table of a finite group (a Latin square)
to have an orthogonal mate. The conjecture was made in 1955.
In 2009 it was proved: Stewart Wilcox showed how to reduce it
to consideration of finite simple groups, and dealt with the
groups of Lie type except for the Tits group (the alternating
groups having been settled by Hall and Paige); Tony Evans did
the Tits group and all the sporadic groups except the fourth
Janko group; the last group was settled by John Bray. The first
two papers were published in 2009, but Bray’s took another
eleven years to appear.



Fourth conversation: Graphs on groups

There are several types of graph which “live” on a group, in
that their vertex set is the set of group elements, which tells us
something about the group.
In all cases, the graph has some symmetries related to the
group.
The first type consists of Cayley graphs. A Cayley graph for a
group G is a graph on the vertex set G for which right
translations x 7→ xg by group elements g ∈ G are
automorphisms.
I will content myself with a short comment or two . . .



Cayley graphs

Cayley graphs form a huge topic. It has been argued that
algebraic graph theory is primarily about Cayley graphs for
finite groups, and also that geometric group theory is about
Cayley graphs for finitely generated infinite groups.
The idea goes back to Arthur Cayley in the 19th century, as
does the action of the group on its Cayley graph.



Let G be a group and S a subset of G. Form a directed graph by
joining x to y whenever y = sx for some s ∈ S. This is the
Cayley graph Cay(G, S).
The associative law guarantees that G is invariant under right
translation by G. (y = sx⇒ yg = s(xg).)
The graph is undirected if and only if S = S−1; loopless if and
only if 1 /∈ S; and connected if and only if S generates G.
There are many different Cayley graphs for a group G. But, in
the case where G is infinite and finitely generated, a Cayley
graph Cay(G, S) for a finite generating set S defines a metric on
G, and different generating sets give quasi-isometric metrics, so
the geometry imposed on G is more or less independent of the
generating set. In particular, concepts such as hyperbolicity
don’t depend on the generating set.



Aut(G)-invariant graphs

I will speak about the other type, which are invariant under the
action of the automorphism group of G on G.
The commuting graph of a group G is the graph with vertex set
G, in which two vertices x and y are joined if xy = yx.
It first appeared in the seminal paper of Brauer and Fowler in
1955, which can be regarded as the first step in the long journey
to the Classification of the Finite Simple Groups.
There are two curious things about the Brauer–Fowler paper.
I It is remembered for the theorem that, given a group H

with a central involution, there are only finitely many
finite simple groups with an involution centralizer
isomorphic to H. Brauer and Fowler do not state this
explicitly; they simply mention it as an afterthought.

I They do not use the word “graph” anywhere in the paper.
But the paper begins with the definition of a metric on a
group, which is just the distance in the commuting graph.



An example

Here are the commuting graphs of the two non-abelian groups
of order 8: D8 = 〈a, b : a4 = 1, b2 = 1, b−1ab = a−1〉 and
Q8 = 〈a, b : a4 = 1, b2 = a2, b−1ab = a−1〉.
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An application

Suppose you have a large unknown group, and you want to
find representatives of the conjugacy classes.
In the symmetric group Sn of order n!, the n-cycles form a
conjugacy class of size (n− 1)!, so it is easy to find one by
choosing, say, n2 random elements. But the transpositions form
a class of size n(n− 1)/2, and resemble a needle in a haystack.
Take the commuting graph, and put a loop at each vertex. Now
a random walk on this graph has limiting distribution which is
uniform on conjugacy classes (that is, the probability of being
at any element is inversely proportional to its conjugacy class
size). This makes small classes findable.
In the example on the last slide, the random walk will spend
twice as long on each red vertex as on each of the other vertices.
Persi Diaconis and Maryanthe Malliaris have used this idea to
argue that the problem of determining the conjugacy classes in
large-dimensional Heisenberg groups over finite fields has no
reasonable solution.



Determining the group

There is a relation called “isoclinism” between groups,
invented by Philip Hall, which says roughly that the
commutation structure in the two groups is the same.
It is not hard to show that isoclinic groups of the same order
have isomorphic commuting graphs. The dihedral and
quaternion groups of order 8 provide examples.

Problem
Is the converse true?



A hierarchy

The commuting graph is just one of a number of graphs
defined on a group (including the power graph and the
non-generating graph) which form a hierarchy.
All these graphs have been studied individually, but we are
beginning to look at them as a hierarchy, and study
comparative properties, properties of their differences, and so
on.
There are other related graphs, such as the Gruenberg–Kegel
graph and the intersection graph of non-trivial proper
subgroups, which are related to the hierarchy, and are involved
in the story.



Ambat Vijayakumar, in Kerala, India, is currently running a
research discussion on these graphs, from which I have just
come.
There is far more that could be said (including the strange
constant 2.6481017597 . . . ), but that will suffice for now . . .

. . . for your attention.


