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Welcome to G2S2!

The G2 conferences are designed as summer schools as well as
international conferences.
In this talk I will tell you a story covering the four topics of the
meeting in reverse order, starting with synchronizing automata
and ending with primitive permutation groups. To fit the
“summer school” element, some of what I say is expository
material aimed at students.
Please feel free to ask questions!
I have prepared a list of exercises and research problems, which
is available on request.



Synchronizing automata

An automaton is a machine which has a set Ω of states, and can
read symbols from an alphabet A. It is a very simple machine:
all it does at a given time step is to read a symbol and change
its state.
An automaton can read a word or sequence of symbols; each
symbol causes a state change.
An automaton is synchronizing if there is a word, called a reset
word, such that when the automaton reads this word, it ends
up in a fixed state, no matter where it starts.
Reset words are useful to bring a machine into a known state
before applying further transformations to it.



An infamous problem

Here is a synchronizing automaton.
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It can be verified that BRRRBRRRB is a reset word (and indeed
that it is the shortest possible reset word for this automaton).

Problem
Show that, if an n-state automaton is synchronizing, it has a reset
word of length at most (n− 1)2.
This is the Černý conjecture, posed in the 1960s and still open.



Decision is easy

Given a finite automaton, we can decide in polynomial time
whether or not it is synchronizing.
This depends on the following observation:

A finite automaton is synchronizing if and only if, for
any two states s and t, there is a word w = ws,t in the
input alphabet such that reading w from s or t takes the
automaton to the same state.

For such a word reduces by (at least) one the number of
reachable states. So after at most n− 1 such words we arrive at
a single state.
Now the next slide shows how this can be tested.



The picture shows the earlier example, with the diagram
extended to show all pairs of states.
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Now it suffices to check that there is a path from any vertex on
the right to some vertex on the left; this can clearly be done in
polynomial time.
The resulting word has length O(n2), giving an O(n3) upper
bound for the length of a reset word. The constant has been
improved, but not the exponent 3.



Transformation monoids

The Černý conjecture seems to have nothing to do with either
graphs or groups; but wait . . .
Each letter of the alphabet corresponds to a transition on the set
Ω of states. Reading a word corresponds to composing the
transitions. So the set of all possible transitions is closed under
composition and contains the identity map (corresponding to
the empty word): so

An automaton can be represented as a transformation
monoid on the set Ω of states, having a distinguished
set of generators. The automaton is synchronizing if
and only if the monoid contains an element of rank 1.

So the Černý conjecture is a question about transformation
monoids, and semigroups enter the picture.



Graphs

An endomorphism of a graph is a map from the vertex set to
itself which carries edges to edges. The action on nonedges is
not specified; a nonedge may map to a nonedge, or to an edge,
or collapse to a single vertex.
The endomorphisms of a graph form a transformation monoid.
Moreover, as long as the graph has at least one edge, its
endomorphism monoid is not synchronizing, since that edge
cannot be collapsed by any endomorphism.



Synchronization and endomorphisms

Now we have a pleasant surprise:

Theorem
A transformation monoid M is non-synchronizing if and only if there
is a non-trivial graph Γ on the domain such that M is contained in the
endomorphism monoid of Γ. Moreover, we can assume that the clique
number and chromatic number of Γ are equal.
A graph is trivial if it is complete (all possible edges) or null (no
edges at all). The clique number is the number of vertices in the
largest complete subgraph, while the chromatic number is the
number of colours required to colour the vertices so that
adjacent vertices get different colours.



Sketch proof
Since endomorphisms cannot collapse edges, it is clear that the
endomorphism monoid of a non-trivial graph must be
non-synchronizing.
For the converse, let M be a transformation monoid on Ω. We
define a graph Gr(M) as follows: the vertex set is Ω; there is an
edge joining s and t if and only if there is no element m ∈ M
with sm = tm. Now
I Gr(M) is non-trivial if and only if M is non-synchronizing;
I M ≤ End(Gr(M));
I Gr(M) has clique number equal to chromatic number.

The first point is clear; I will outline the second. If it fails, then
some element m ∈ M maps an edge {s, t} to either a single
vertex or a non-edge. The first case contradicts the definition;
in the second case, there is m′ ∈ M with (sm)m′ = (tm)m′, so
mm′ maps s and t to the same place.
For the last point, take an element m ∈ M of minimal rank; then
m is a colouring of the graph and its image is a clique.



Does this help?

We seem to have replaced an easy problem (deciding whether
an automaton is synchronizing) by a much harder problem
(deciding whether the graph has clique number equal to
chromatic number).
However, the advantage is that we can potentially show that
whole classes of automata are synchronizing, or
non-synchronizing.
In our introductory example, one of the basic transitions of the
automaton was a permutation (generating a cyclic group of
order 4), while the other was not. We now turn to automata
with the property that all but one of their transitions are
permutations.



Groups

A permutation group is a transformation monoid in which
every element is a bijection. Permutation groups form the
oldest part of group theory, going back to the work of Galois or
earlier.
Here are some basic definitions related to permutation groups.
If you have seen these before, my definitions may look a little
different, but you should be able to see that they are equivalent.
If you haven’t seen them, then you can take these as the
definitions.
Let Ω be a set. I will call a structure on Ω trivial if it is invariant
under the symmetric group, the group of all permutations of Ω.
Many important permutation group properties can be defined
saying that a permutation group G on Ω (a subgroup of
Sym(Ω)) has property P if it preserves no non-trivial structure
of type X on Ω.



Permutation group properties

I A permutation group G on Ω is transitive if it preserves no
non-trivial subset of Ω. (The trivial subsets are the whole
of Ω and the empty set.)

I A permutation group G on Ω is primitive if it is transitive
and preserves no non-trivial partition of Ω. (The trivial
partitions are the partition into singletons and the partition
with a single part Ω.)

I A permutation group G on Ω is 2-homogeneous if it
preserves no non-trivial graph on Ω. (The trivial graphs
are the complete and null graphs.)

Now we can add one further property:
I A permutation group G on Ω is synchronizing if it

preserves no no-trivial graph with clique number equal to
chromatic number on Ω.



Note on terminology

A permutation group cannot be synchronizing as a
transformation monoid (unless the domain has just one point).
So we hijack the word for a different use, as described on the
preceding slide.

Theorem
The permutation group G on Ω is synchronizing if and only if, for
every non-permutation f of Ω, the transformation monoid 〈G, f 〉
generated by G and f is synchronizing.
Sketch proof: If G preserves a non-trivial graph with clique
number equal to chromatic number, then this graph has an
endomorphism f which is not an automorphism; so 〈G, f 〉
preserves the graph, and is not synchronizing.
Conversely, if there exists f such that 〈G, f 〉 is not
synchronizing, then this monoid is contained in End(Γ), where
Γ is a non-trivial graph with clique number equal to chromatic
number; clearly G ≤ Aut(Γ).



Which permutation groups are synchronizing?

A long-running project aims to answer this question. Here is a
summary of what we know.
I A synchronizing group is transitive. For if G preserves a

non-trivial subset ∆ of Ω, then the complete graph on ∆ is
a non-trivial G-invariant graph with clique number equal
to chromatic number.

I A synchronizing group is primitive. For if G is transitive
and preserves a non-trivial partition P of Ω, then all parts
of P have the same size, and the disjoint union of complete
graphs on the parts of P is G-invariant and has clique
number equal to chromatic number.



The O’Nan–Scott Theorem

The structure of finite primitive permutation groups is given by
this theorem, which was proved independently by Michael
O’Nan and Leonard Scott in 1979. However, much of the
theorem, including what we need, was in Camille Jordan’s
Traité des Substitutions a hundred years earlier. The groups in
the theorem will be explained on the next few slides.

Theorem
A finite primitive permutation group G on Ω satisfies one of the
following:
I G is contained in a wreath product with product action;
I G is affine;
I G is contained in a group of simple diagonal type;
I G is almost simple.



Non-basic groups

Let A be a finite alphabet and m an integer greater than 1. The
Hamming graph H(m, A) has vertex set Am (the set of words of
length m over the alphabet A); two vertices are joined if they
have Hamming distance 1 (that is, they agree in all positions
except one).
The wreath products in the first part of the O’Nan–Scott
Theorem preserve Hamming graphs. We call these non-basic; a
permutation group is basic if it preserves no Hamming graph.
I A synchronizing group is basic.

For this we need to show that Hamming graphs have clique
number equal to chromatic number. Let |A| = n. The set of
vertices with arbitrary entry in the first position and all other
entries equal is a clique of size n. But, if we take A to be an
abelian group of order n, then the function mapping a1a2 . . . am
to a1 + a2 + · · ·+ am is a colouring with n colours.



Affine and almost simple groups

A permutation group G on Ω is affine if Ω can be identified
with a vector space over a prime field F so that elements of G
have the form v 7→ vM + c for some matrix M and vector c.
Affine groups may or may not be synchronizing.
A group G is almost simple if T ≤ G ≤ Aut(T) for some
non-abelian finite simple group G. Note that the action as a
permutation group is not specified, and is completely arbitrary.
Almost simple groups may or may not be synchronizing.



Diagonal groups

I will not describe the groups of simple diagonal type in detail.
I will just say that diagonal groups in much greater generality
are studied in a recent paper with Rosemary Bailey, Cheryl
Praeger and Csaba Schneider.
The diagonal group D(G, m) of dimension m over a group G is
a permutation group of degree |G|m containing Gm as a regular
subgroup.
If G is a non-abelian simple group, we have a simple diagonal
group; these are the groups in the O’Nan–Scott theorem.
However, the construction of these groups does not require G
to be simple, or even finite.



Diagonal groups with dimension at least 2 preserve a graph
known as a diagonal graph. Based on the proof in 2009 of the
Hall–Paige conjecture, it is possible to show that a diagonal
graph over a finite simple group has clique number equal to
chromatic number. Hence permutation groups of simple
diagonal type with dimension at least 2 are non-synchronizing.
There remain the simple diagonal groups of dimension 1.
These contain the group G×G, acting on G by left and right
multiplication, together with possibly inversion and
automorphisms of G. A recent result of John Bamberg, Michael
Giudici, Jesse Lansdown and Gordon Royle shows that these
groups may or may not be synchronizing.



Latin squares

I will end with some words about Latin squares, which provide
a connection with diagonal groups, and explain the relevance
of the Hall–Paige conjecture. Rosemary will tell you more
about diagonal graphs in her lecture on Friday.
A Latin square is a square array of size n× n filled with letters
from an alphabet of size n, so that each letter occurs once in
each row and column.

e a b c
a e c b
b c e a
c b a e

Latin squares exist in great profusion. There are more than
exp(n2) Latin squares of order n; exact numbers are only
known up to n = 11.



Latin square graphs

The Cayley table of a group is a Latin square. (The Latin square
on the preceding slide is the Cayley table of the Klein group
V4.) These Latin squares are better behaved: the automorphism
group (or paratopism group, as it is called) of the Cayley table
based on G is the 2-dimensional diagonal group over G.
The Latin square graph Γ(L) has as vertices the n2 cells of L,
two vertices adjacent if the cells are in the same row or same
column or contain the same letter. Latin square graphs are
strongly regular, and indeed form a very prolific family of
strongly regular graphs.



Transversals

Let L be an n× n Latin square. A transversal of L is a collection
of n cells, one in each row, one in each column, and one
containing each symbol.

e a b c
a e c b
b c e a
c b a e



Orthogonal mates

An orthogonal mate of L is a n× n Latin square M with the
property that, for any (a, b), where a is in the alphabet of L and
b in the alphabet of M, there is a unique cell in which L contains
the letter a and M contains the letter b. The letters of M
partition the cells of L into transversals.

e a b c
a e c b
b c e a
c b a e



Cayley tables

For arbitrary Latin squares, the existence of a transversal and
an orthogonal mate are far from equivalent; but for Cayley
tables of groups, we have:

Theorem
For the Cayley table L of a group G of order n, the following are
equivalent:
I L has a transversal;
I L has an orthogonal mate;
I the Latin square graph Γ(L) has chromatic number n.

Marshall Hall Jr and Lowell Paige conjectured in 1955 that a
finite group G satisfies the three equivalent conditions of the
preceding theorem if and only if either G has odd order or the
Sylow 2-subgroups of G are non-cyclic.



The Hall–Paige conjecture

The conjecture was proved by Stewart Wilcox, Tony Evans and
John Bray in 2009.
Wilcox reduced the problem to the case of non-abelian simple
groups, and handled the groups of Lie type except for the Tits
group 2F4(2)′ (the alternating groups had been done by Hall
and Paige); Evans dealt with the Tits group and all the sporadic
simple groups except for the Janko group J4; and Bray did J4,
although his proof was not published until 2020.



Diagonal groups of dimension 2 are non-synchronizing

The diagonal group D(G, 2) of dimension 2 over G preserves
the Latin square graph of the Cayley table of G. (Indeed, with a
few small exceptions, it is the automorphism group of the Latin
square graph.)
If the diagonal group is primitive, then G must be simple. Since
the Sylow subgroups of finite simple groups are non-trivial and
non-cyclic, the Latin square graphs of their Cayley tables have
clique number equal to chromatic number. So the
2-dimensional simple diagonal groups are non-synchronizing.



Higher dimensions

Using graph homomorphisms it is possible to extend this result
to all higher dimensions.
It can be shown that, over a given group G, there is a
homomorphism from the m-dimensional diagonal graph to the
(m− 2)-dimensional diagonal graph.
Now homomorphisms do not increase chromatic number; the
1-dimensional diagonal graph is complete on |G| vertices; and
the 2-dimensional case is handled by the Hall–Paige conjecture.
So D(G, m) is non-synchronizing for all non-abelian simple
groups G and all m ≥ 2.
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