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These are the slides of two talks I gave to the Graphs and
Groups research seminar run from CUSAT in Kochi, Kerala,
India on 24 and 25 March 2021.
The changes are:
I I have corrected a couple of misprints.
I There is more material here than I covered in the lectures.
I The theorem that the power graph of a group of prime

power order is a cograph was not in my lectures, but was
discussed afterwards, so I have included the proof.

My thanks to the audience for their comments.



The generating graph of A5 (with thanks to Scott Harper)
Vertices are non-identity elements of G = A5

x is joined to y if 〈x, y〉 = G.



Graphs and groups

I am delighted to be giving two talks to open this seminar. It is
an auspicious occasion!
“Graphs and groups” is a very big subject, taking in geometric
group theory, much of algebraic graph theory, aspects of
computation such as the graph isomorphism problem, finite
and infinite permutation groups, and much else besides. But
my goals are more limited.
In these two talks I will be speaking mainly about the following
situation. G is a group, usually finite but it may be infinite; Γ is
a graph with vertex set G (or some subset of G), whose edges
reflect in some way the group structure of G.
Typical examples, which you may have met, include the
commuting graph and the power graph.



Outline

In these two talks I hope to
I introduce a hierarchy of graphs;
I describe a few of their properties;
I develop some graph theory to help study them;
I relate them to other graphs (Gruenberg–Kegel graph,

intersection graphs);
I pose a number of open problems;
I provide you with some tools to study these problems.

One particular class of problems concerns cographs. I will
define these, show why they are important for our problem,
and pose the question: for which groups G is the power graph
(or commuting graph, or one of the others) a cograph?
Much more detail, and many references, can be found in the
preprint: arXiv 2102.11177.



Notation

A talk about groups typically begins “Let G be a group . . . ”,
while a talk about graphs will start “Let G be a graph . . . ”. We
will be talking about both, so we have to make a decision.
“Graph” is a Greek word, so it makes sense for a graph to be Γ.
“Group” is a German word, so perhaps a group should be G;
but I never learned how to do a Gothic G in handwriting, and
probably you didn’t either, so I will use G for a group.



Notation, 2

Various ad hoc notations have been used for particular kinds of
graphs defined on a group G, such as G(G) or Γ(G). Since I will
be talking about several kinds of graphs, this will not really
work either.
So my notation will be like this: the power graph of G will be
Pow(G), the commuting graph will be Com(G). Similar
notation will be introduced for other kinds of graphs, when I
describe these, as I will do next.
For easy comparison, I will simply define each of these graphs
to have vertex set the whole of G. For some questions it makes
sense to talk about the “reduced” graph, where the identity, or
the elements in the centre, or perhaps the vertices joined to all
others, are removed.
Apart from this, most of my notation for graphs and groups
will be standard.



Dramatis Personae, 1: the commuting graph
The commuting graph was the first of the four to be defined; it
appeared in the famous paper of Brauer and Fowler on
centralisers of involutions in finite groups in 1955.
The commuting graph Com(G) of G has vertex set G; vertices g
and h are joined if and only if gh = hg. (This definition would
put a loop at every vertex; we silently suppress these.)
Here are the commuting graphs of the two non-abelian groups
of order 8: D8 = 〈a, b : a4 = 1, b2 = 1, b−1ab = a−1〉 and
Q8 = 〈a, b : a4 = 1, b2 = a2, b−1ab = a−1〉.
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Dramatis Personae, 2: the power graph

Next on the scene, much later, was the power graph, defined by
Kelarev and Quinn in 1999.
The directed power graph DPow(G) of G has vertex set G;
there is an arc from g to h if h is a power of g. Again we ignore
loops. The power graph Pow(G) of G is obtained by ignoring
the directions on the arcs (and suppressing one of them if each
of g and h is a power of the other); in other words, g and h are
joined if one is a power of the other.
The power graph does not uniquely determine the directions;
but the following holds:

Theorem
If two groups have isomorphic power graphs, then they have
isomorphic directed power graphs.
The graph shown earlier is the power graph of Q8, but not of
D8.



Dramatis Personae, 3: the enhanced power graph

The enhanced power graph is more recent. The complementary
graph was defined by Abdollahi and Hassanabadi in 2007
under the name “noncyclic graph”; I will use the description
appearing in a paper of Aalipour et al. in 2017.
The enhanced power graph EPow(G) has vertex set G; we join
g to h if and only if there is an element k such that both g and h
are powers of k. Equivalently, g and h are joined if and only if
〈g, h〉 is cyclic.
We saw that the power graph determines (up to isomorphism)
the directed power graph, and hence the enhanced power
graph. The converse is also true; if two graphs have isomorphic
enhanced power graphs, then they have isomorphic power
graphs.



Dramatis Personae, 4: the deep commuting graph
The final actor, the deep commuting graph, is not yet
published, but can be found in a paper by Bojan Kuzma and
me on the arXiv.
The deep commuting graph DCom(G) has vertex set G;
vertices g and h are joined if and only if their inverse images in
every central extension of G commute. (That is, if Z 6 Z(H)
with H/Z ∼= G, and aZ and bZ are the cosets of Z
corresponding to g and h, then we require that a and b
commute (in every such extension).
We showed that it suffices to take a single central extension of
G, namely a Schur cover (where Z 6 Z(H) ∩H′ and subject to
this Z is as large as possible). It is independent of the choice of
Schur cover.
For example, the Klein group of order 4 has two Schur covers,
the dihedral and quaternion groups of order 8; so the deep
commuting graph of V4 is the star K1,3.
The deep commuting graph is harder to work with than the
others.



Dramatis Personae, 5: the non-generating graph

The generating graph Gen(G) of a group G is the graph with
vertex set G in which a and b are joined if and only if G = 〈a, b〉.
(If G cannot be generated by two elements, this is the graph
with no edges.) The non-generating graph NGen(G) is the
complement of the generating graph.
It follows from the Classification of Finite Simple Groups that
every non-abelian finite simple group can be generated by two
elements; so we have some interesting examples to play with!
There are several other graphs which have been studied, some
of which you can find in my manuscript mentioned earlier; but
that will do for now.



Different behaviour

The power graph, enhanced power graph, and commuting
graph all have the following nice property:

The induced subgraph of X(G) on a subgroup H of G
is X(H).

It is quite different for the non-generating graph. The induced
subgraph of NGen(G) on a proper subgroup H of G is the
complete graph on H, since two elements of H cannot generate
G.
The deep commuting graph is much more irregular, caused by
the strange behaviour of the Schur multiplier.



The hierarchy

The first four graphs defined above on G form a hierarchy, in
the order power graph, enhanced power graph, deep
commuting graph, commuting graph, in the sense that the edge
set of each is contained in the edge set of the next.
This is clear in all cases except the enhanced power graph and
deep commuting graph. So suppose that {g, h} is an edge of the
enhanced power graph, so that 〈g, h〉 = 〈k〉 for some k. Now let
H be a central extension of G with kernel Z. Let a, b, c be
representatives of the cosets of Z in H corresponding to g, h, k.
Then 〈Z, a, b〉 = 〈Z, c〉, which (as a cyclic extension of a central
subgroup) is abelian; so a and b commute.
Furthermore, if G is non-abelian or not 2-generated, then the
edge set of the commuting graph is contained in the edge set of
the non-generating graph, so the hierarchy has one more term.
We can also put the complete graph at the top and the null
graph at the bottom.



Equality

Now we have built such a hierarchy, we can ask: when are two
of these graphs equal?
We have at least partial answers in most cases:
I Pow(G) is equal to the null graph if and only if G is the

trivial group.
I EPow(G) = Pow(G) if and only if G contains no subgroup

Cp × Cq, for distinct primes p and q.
I Com(G) = EPow(G) if and only if G contains no subgroup

Cp × Cp, for prime p.
I For G nonabelian, NGen(G) = Com(G) if and only if G is a

minimal non-abelian group.
I NGen(G) is complete if and only if G cannot be generated

by two elements.



At least something is known in all these cases, except the last
where there is probably nothing to say.
Groups not containing Cp × Cq are those in which every
element has prime power order (these are sometimes called
EPPO groups. There is a classification in my paper with Natalia
Maslova.
Groups containing no Cp × Cp are those in which the Sylow
subgroups are cyclic or generalized quaternion. Known
classification theorems determine these groups.
Minimal non-abelian groups were determined by Miller and
Moreno back in 1904.



What about the deep commuting graph?

The deep commuting graph was introduced specifically as a
graph lying between the enhanced power graph and the
commuting graph. So when can it be equal to either of these?
The answer is not so easy to state. Equality of the enhanced
power graph and the deep commuting graph depends on a
group-theoretic condition; but equality of the deep commuting
graph and the commuting graph involves yet another
construction, the Bogomolov multiplier of a group. (These two
graphs on G are equal if and only if the Bogomolov multiplier
is equal to the Schur multiplier.)
I don’t understand the Bogomolov multiplier very well; but it
is always trivial if G is a non-abelian simple group, and can be
computed with the GAP package HAP.



Differences

If two graphs in the hierarchy are not equal, we can ask about
their difference, the graph containing the edges of the larger
which are not edges of the smaller.
The difference between the power graph and the null graph is
the power graph, and the difference between the complete
graph and the non-generating graph is the generating graph.
Both of these have been intensively studied.
To my knowledge, only one other case has been looked at. This
is the difference between the non-generating graph and the
commuting graph, for non-abelian groups. Saul Freedman, a
PhD student at the University of St Andrews, has considered
these; his thesis will contain detailed results about the question
of connectedness of these graphs.



A problem

Other cases are open. So let us take what is probably the easiest
case. Given a group G, consider the graph where x is joined to y
if and only if they are joined in the commuting graph but not in
the power graph (in other words, xy = yx but neither of x and y
is a power of the other.

Question
Choose your favourite graph-theoretic property or parameter, and
study this graph on a group G: when does it have your property, or
what is the value of your parameter, on that graph?
If you succeed, carry on with some of the other differences!



Universality

Of course, this problem can be formulated also for the original
graphs in the hierarchy. Here, of course, much more is known:
there have been detailed study of the commuting graph and the
power graph, and work has begun on the enhanced power
graph. Here is a sample result.

Theorem
I The power graph of any finite group is the comparability graph

of a partial order; but every finite graph which is the
comparability graph of a partial order is an induced subgraph of
the power graph of some group.

I Each of the other non-trivial graph types in the hierarchy is
universal: that is, every finite graph is an induced subgraph of
the enhanced power graph (or commuting graph, or . . . ) of some
finite group.



Question

I Find a good upper bound for the order of a group G such that
every n-vertex graph is an induced subgraph of the power graph
(or commuting graph, or . . . ) of G.

I Find a good upper bound for the function f such that every
n-vertex graph is an induced subgraph of the power graph (or
commuting graph, or . . . ) of a group of order at most n.

For the second question, for the commuting graph the function
f (n) = 2n+1 suffices. There are less good bounds in the other
cases.
For the first, the best bound I have is 22n+1: we can take G to be
an extraspecial group of order 22n+1 (the central product of n
copies of the quaternion group of order 8).
Plenty of good problems here!



Cographs

Now I am going to tell you about cographs. You will not see at
first why they are an important class of graphs, but they are!
The fact that they have been rediscovered several times with
different names (complement-reducible graphs, hereditary
Dacey graphs, N-free graphs) should indicate their significance.
A finite graph Γ is a cograph if it has no induced subgraph
isomorphic to the 4-vertex path.
Since the 4-vertex path graph is self-complementary, the
complement of a cograph is a cograph.
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Properties of cographs

Here are a few properties of cographs:

Theorem
I If a cograph on more than one vertex is connected, then its

complement is disconnected.
I Cographs form the smallest non-empty class of graphs which is

closed under the operations of complement and disjoint union; so
every cograph can be built from the 1-vertex graph by these
operations.

I The automorphism group of a cograph can be built from the
trivial group by the operations “direct product” and “wreath
product with a symmetric group”.

The proofs are not too difficult, and are left as an exercise.
The recursive structure gives efficient algorithms for many
problems on cographs which are hard for general graphs.



Twins
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Two vertices in a finite graph Γ are twins if they have the same
neighbours (possibly excepting one another).
Twins can be interchanged by an automorphism fixing all other
vertices.
There are two kinds of twins. If I need to distinguish, I will say
that x and y are open twins if they have the same open
neighbourhoods, and are closed twins if they have the same
closed neighbourhoods. Note that open twins are not joined,
whereas closed twins are joined.
Being twins is an equivalence relation. In each equivalence
class, all pairs of vertices are of the same type (open twins, or
closed twins).



Twin reduction

If we collapse a pair of twins to a single vertex, and continue
this until there are no more pairs of twins, the result (which I
will call the cokernel of the graph) is independent of the
sequence of reductions.

Theorem
Γ is a cograph if and only if its cokernel is the 1-vertex graph.

Proof.
First show that a cograph on more than 1 vertex has twins. The
proof is by induction. If the graph is null, it is clear; if it is
disconnected but not null, a nontrivial component has twins;
and if it is connected, consider the complement. Moreover,
twin reduction preserves the cograph property.
Conversely, an induced 4-vertex path has no twins and so
cannot be destroyed by twin reduction.



Forbidden subgraphs

Given a graph F, let Forb(F) denote the class of graphs
containing no induced subgraph isomorphic to F.
Suppose that F has no pairs of twins. Then twin reduction can
neither create nor destroy an induced copy of F. Hence

Theorem
Let F be a twin-free graph. Then a graph belongs to Forb(F) if and
only if its cokernel does.



Perfect graphs

A graph is perfect if every induced subgraph has clique
number equal to chromatic number. According to the Strong
Perfect Graph Theorem of Chudnovsky et al., a graph is perfect
if and only if it has no induced subgraph which is an odd cycle
on at least five vertices or the complement of one. Since all
these graphs are twin-free, we conclude:

Proposition

A graph is perfect if and only if its cokernel is perfect.
In particular, cographs are perfect (a fact which is easily proved
directly).



Power graphs are perfect

As a small diversion, I show:

Theorem
The power graph of a finite group is a perfect graph.

Proof.
This is because the directed power graph is a partial preorder (a
reflexive and transitive relation), and the power graph is its
comparability graph. It is easy to show that we can replace any
partial preorder by a partial order with the same comparability
graph. Now the comparability graph of a partial order is
perfect, by Dilworth’s Theorem (the easy direction).
For the other types of graph, we do not know for which groups
they are perfect.



Graphs in the hierarchy always have twins

Theorem
For each of the types X of graph introduced earlier, if G is a
non-trivial group, then X(G) has non-trivial twin relation.

Proof.
If g is an element of G with order m > 2, and gcd(m, d) = 1,
then g and gd are closed twins (i.e. have the same closed
neighbourhood).
The only case remaining is that when G is an elementary
abelian 2-group, in which case X(G) is either complete (for the
commuting graph, or the non-generating graph if the order is
greater than 4) or a star (for the others).



Automorphisms

If x and y are twins, then the transposition of x and y, fixing all
other vertices, is an automorphism of the graph. So its
automorphism group has a normal subgroup which is the
direct product of symmtric groups on the twin classes.
So if you are interested in the automorphism group, you might
first want to carry out twin reduction. Of course, if the graph is
a cograph, the result will be the trivial graph . . .
The first time I thought about the non-generating graph of A5, I
was shocked to find that its automorphism group has order
23482733690880. Most of this is accounted for by the normal
subgroup (S2)10 × (S4)

6. In fact the cokernel has 32 vertices,
and its automorphism group is Aut(A5) = S5.



When is the power graph a cograph?

For any of the four types of graph in our hierarchy, and any
group G of order greater than 1, the corresponding graph on G
has non-trivial twin relation. For, if g is an element of order
m > 2, and d is coprime to m, then g and gd are twins. In the
excluded case, G is an elementary abelian 2-group; this is easily
dealt with.
So we can apply twin reduction, and it is of some interest to
know whether we reach the 1-vertex graph (in other words,
whether the graph is a cograph).
I will say a few words about how this problem might be
attacked, starting with the power graph.



Connectedness

Whether a graph is a cograph is unaffected by adding isolated
vertices, or vertices joined to all others.
For the power graph, we know the set of vertices joined to all
others:
I if G is cyclic of prime power order, the whole of G (the

power graph is complete);
I if G is cyclic but not of prime power order, the set

consisting of the identity and the generators;
I if G is generalized quaternion, Z(G);
I in all other cases, just the identity.

So these are the isolated vertices in the complement of the
power graph.



Theorem
For any finite group G, the complement of the power graph has a
single connected component, apart from isolated vertices.
The upshot of this theorem is that, if Pow(G) is a cograph, then
after removing isolated vertices, it is disconnected.
Using the fact that the complement of the power graph is
obtained from the complement of the commuting graph by
adding edges, this theorem follows fairly easily from the
following:

Theorem
For any finite group G, the complement of the commuting graph has a
single connected component, apart from isolated vertices. This
component has diameter at most 2.



Proof.
In the commuting graph Com(G), the closed neighbourhood of
any vertex g is a subgroup of G, namely the centraliser CG(g).
If g ∈ Z(G), then it is joined to all other vertices in Com(G),
and hence is isolated in the complement.
Suppose that neither g nor h is in Z(G). Then CG(g) and CG(h)
are proper subgroups of G. Since a finite group cannot be
written as a union of two proper subgroups (this is an exercise
for you if you haven’t seen it before), we see there is an element
k outside both. Then k is joined to g and h in the complement of
Com(G).



Nilpotent groups

A finite group is nilpotent if it is the direct product of its Sylow
subgroups.
Last year, Pallabi Manna, Ranjit Mehatari and I proved the
following.

Theorem
Let G be a nilpotent group whose power graph is a cograph. Then
either G is a p-group for some prime p, or G is cyclic of order pq where
p and q are distinct primes.
The point of this theorem is that it tells us that, if the power
graph of an arbitrary group G is a cograph, then any nilpotent
subgroup of G apart from its Sylow p-subgroups must be cyclic
of order pq for distinct primes p and q.



The converse

This was not in the talk but arose in the discussion so I have
included a proof.

Theorem
If the group G has prime power order, then its power graph is a
cograph.

Proof.
Let (a, b, c) be a 3-vertex induced path. In the directed power
graph, we cannot have a→ b→ c or c→ b→ a, since→ is
transitive; and we cannot have b→ a and b→ c, since then a
and c lie in the cyclic group 〈b〉 of prime power order, and so
one is a power of the other. So we have a→ b and c→ b.
If (a, b, c, d) is a 4-vertex path, then c→ b and (looking at the
path (b, c, d)) also b→ c; so b and c generate the same cyclic
group, contradicting the fact that a is joined to b but not to c.



A test problem

The next problem is maybe not so interesting in itself, but could
be a good indicator of how well we understand groups whose
power graph is a cograph.

Question
Is the following true? Let Γ be a cograph. Then there exists a group G
such that Pow(G) is a cograph and contains Γ as an induced
subgraph.
This is tricky for a couple of reasons:
I The inductive scheme for cographs depends on taking the

complement. But it is not clear what the complement of a
power graph is.

I The result above about nilpotent groups implies that there
will be no nice direct product construction to handle
disjoint unions.

Probably we have to look for a p-group G.



What happens for PSL(2, q)?

Let q = pa, p prime. Let l and m be q− 1 and q + 1 if q is even, or
(q− 1)/2 and (q + 1)/2 if q is odd. Then, apart from the
(abelian) Sylow p-subgroup, the maximal abelian subgroups of
PSL(2, q) are cyclic groups or orders l and m, whose
normalisers are dihedral (hence not nilpotent unless l or m is a
power of 2). So we have:

Theorem
Let l and m be as above. Then the power graph of G = PSL(2, q) is a
cograph if and only if each of l and m is either a prime power or a
product of two distinct primes.



Question
Are there infinitely many prime powers q for which the power graph
of PSL(2, q) is a cograph?
This is probably quite a hard number-theoretic problem. It has
a superficial resemblance to questions about Fermat and
Mersenne primes, and about the Catalan conjecture on proper
powers differing by 1 (now the theorem of Mihăilescu), but is
not equivalent to any of these.
The values of d up to 200 for which the conditions of the
theorem hold for q = 2d are 1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 31,
61, 101, 127, 167, 199.
Small odd prime powers with the property are easily listed.
The first few are 3, 5, 7, 9, 11, 13, 17, 19, 27, 29, 31, 43, 53, 67, 163,
173, 243, 257, 283, 317



Other simple groups

The table on the next slide gives the sizes of cokernels of
various graphs defined on the first few finite non-abelian
simple groups G by order. The columns give the power graph,
enhanced power graph, deep commuting graph, commuting
graph, and non-generating graph.
Recall that a graph is a cograph if and only if its cokernel has 1
vertex.

Question
For the various types X of graph, for which simple groups G is X(G) a
cograph?



G |G| Pow EPow DCom Com NGen
A5 60 1 1 1 1 32

PSL(2, 7) 168 1 1 1 44 79
A6 360 1 1 1 92 167

PSL(2, 8) 504 1 1 1 1 128
PSL(2, 11) 660 1 1 1 112 244
PSL(2, 13) 1092 1 1 1 184 366
PSL(2, 17) 2448 1 1 1 308 750

A7 2520 352 352 352 352 842
PSL(2, 19) 3420 1 1 1 344 914
PSL(2, 16) 4080 1 1 1 1 784
PSL(3, 3) 5616 756 756 808 808 1562
PSU(3, 3) 6048 786 534 499 499 1346
PSL(2, 23) 6072 1267 1 1 508 1313
PSL(2, 25) 7800 1627 1 1 652 1757

M11 7920 1212 1212 1212 1212 2444



The table suggests various conjectures, some of which can be
proved. For example:

Theorem
The non-generating graph of a non-abelian finite simple group is not
a cograph.

Proof.
Recently Burness, Guralnick and Harper have shown that the
reduced generating graph of a finite simple group has spread
(at least) 2: this means that any two non-identity elements have
a common non-identity neighbour. So the generating graph is
connected.
Also Shen proved that the reduced non-generating graph of a
finite simple group is connected; recently Freedman showed
that the best bound for the diameter is either 4 or 5.
To finish the proof, recall that if a cograph is connected, then its
complement is disconnected; and adding a vertex joined to all
others does not change the property of being a cograph.



Question
Find, or estimate, the number of vertices in the cokernel of the
non-generating graph of a finite simple group (or indeed, of some of
the other types of graph we are considering).
It is possible that results on the generating and non-generating
graphs will give some information about this.



The commuting graph

Question
For which groups G is the commuting graph of G (a) a cograph, (b)
perfect?
We have another tool to help us answer this question. The
strong product Γ� ∆ of graphs Γ and ∆ is the graph whose
vertex set is the Cartesian product of the vertex sets of Γ and ∆,
with vertices (v1, w1) and (v2, w2) joined whenever v1 is equal
or adjacent to v2 and w1 is equal or adjacent to w2, but not
equality in both places. (All of the graphs in the hierarchy
naturally have loops at each vertex, which we have discarded;
the strong product is the natural categorical product in the
category of graphs with a loop at each vertex.)
Te strong product, along with the Cartesian and categorical
products, is denoted by a symbol representing the
corresponding product of two edges: the Cartesian product is
Γ� ∆, while the categorical product is Γ× ∆.



Direct products

Theorem
Let G and H be finite groups.
I Com(G×H) = Com(G)�Com(H).
I If G and H have coprime orders, then

EPow(G×H) = EPow(G)� EPow(H).
I If G/G′ and H/H′ have coprime orders, and in particular if G

and H are perfect groups, then
DCom(G×H) = DCom(G)�DCom(H).

Thus, questions about the commuting graph or enhanced
power graph of a nilpotent group can be reduced to questions
about the corresponding graphs for their Sylow subgroups.



Perfectness

To help with these questions, I note that the perfectness of the
strong product of graphs has been studied by Ravindra and
Parthasarathy. So we should be able to decide which nilpotent
groups have perfect commuting graphs or enhanced power
graphs.
Cographs will be more difficult, since the class of cographs is
not preserved by the strong product:
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Question
When is the strong product of cographs a cograph?



The Gruenberg–Kegel graph

The Gruenberg–Kegel graph (sometimes called the prime
graph) of a finite group G is defined as follows. Its vertex set is
the set of prime divisors of the order of G; an edge joins p to q if
and only if G contains an element of order pq.
These graphs were introduced by Gruenberg and Kegel in an
unpublished manuscript concerned with the integral group
ring of G, and in particular the decomposability of the
augmentation ideal.
Their main result (published later by Gruenberg’s student
Williams) is a structure theorem for groups whose
Gruenberg–Kegel graph is disconnected. It asserts that such a
group is either
I a Frobenius or 2-Frobenius group; or
I an extension of a nilpotent π-group by a simple group by a

π-group, where π is the set of primes in the connected
component containing 2.



Applications of the GK graph

Theorem
If two groups have isomorphic power graphs (or enhanced power
graphs, or deep commuting graphs, or commuting graphs), then they
have the same Gruenberg–Kegel graph.

Theorem
Let G be a group with Z(G) = 1. Then the reduced commuting graph
(the induced subgraph of the commuting graph on the set of
non-identity elements) is connected if and only if the
Gruenberg–Kegel graph of G is connected.

Theorem
Let G be a finite group. Then Pow(G) = EPow(G) if and only if the
Gruenberg–Kegel graph of G is a null graph (a graph with no edges).
These groups were mentioned earlier under the name EPPO
groups.



The GK graph and cographs

It also follows that, if the GK graph of G has no edges (that is, if
G is an EPPO group), then Pow(G) is a cograph.
The converse is false; but from Williams’ results on the GK
graph and my result with Manna and Mehatari on nilpotent
groups, we get the following:

Theorem
Suppose that G is a finite non-solvable group for which Pow(G) is a
cograph. Then each connected component of the Gruenberg–Kegel
graph of G has at most two vertices, except possibly for the component
containing the prime 2.
The GK graph does not completely determine whether Pow(G)
is a cograph. Consider the two simple groups PSL(2, 11) and
M11. They have the same GK graph (it has four vertices
{2, 3, 5, 11}; there is an edge {2, 3} while 5 and 11 are isolated),
but the power graph of the first group is a cograph, while that
of the second is not.



A duality on graphs

In order to study intersection graphs, we need to define a
“duality” relation on graphs.
Let B be a bipartite graph (with a specified bipartition (V1, V2)).
Let Γ1 and Γ2 be the graphs whose vertex sets are V1 and V2,
two vertices adjacent if they lie at distance 2 in B. These are the
halved graphs of B.
We call a pair of graphs Γ1 and Γ2 a dual pair if there is a
bipartite graph B without isolated vertices such that Γ1 and Γ2
are the halved graphs of B.

Theorem
Let Γ1 and Γ2 be a dual pair of graphs. Then there is a bijection
between the connected components of Γ1 and those of Γ2 such that the
diameters of corresponding components are equal or differ by 1.



Intersection graphs

The intersection graph of a non-trivial group G is the graph
whose vertices are the non-trivial proper subgroups of G, two
vertices adjacent if the corresponding subgroups have
non-trivial intersection.

Theorem
The reduced non-generating graph of G and the intersection graph of
G form a dual pair.

Proof.
Let B be the bipartite graph whose vertices are the non-identity
elements of G and non-trivial proper subgroups of G, with g
joined to H if g ∈ H. Then B witnesses that the two graphs of
the theorem form a dual pair.
So these two graphs have the same number of connected
components, and the diameters of corresponding components
differ by at most 1.



Other examples

A simple modification of this argument gives us more
examples of dual pairs:
I the commuting graph of G and the intersection graph of

non-trivial abelian proper subgroups of G;
I the enhanced power graph of G and the intersection graph

of non-trivial cyclic proper subgroups of G.

Question
Do other properties apart from connected components transfer
between the members of a dual pair?



Other graphs on a group

Other graphs which can be considered include
I the nilpotency graph of G, with x ∼ y if 〈x, y〉 is nilpotent;
I the solvability graph of G, with x ∼ y if 〈x, y〉 is solvable;
I the directed Engel graph of G, with x→ y if

[y, x, x, . . . , x] = 1 (with an arbitrary number of xs), or its
undirected version.

For many groups, including non-abelian finite simple groups,
the nilpotency and solvability graphs fit into the hierarchy
above the commuting graph but below the non-generating
graph.
Also, all these graphs can be defined on infinite groups; quite a
bit is known.
But time does not permit discussion of this here.
That arXiv number again: 2102.11177


