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Introduction

I would like to begin with a sincere thank-you to those
involved in organising the RDGG, especially Vijay for setting it
up and asking me to contribute, and Aparna for her invaluable
support.
Vijay said to me that he had acted according to the precept in
the Bhagavad-Gita: “To action alone one has the right but not to
its fruits.” He saw my paper on the arXiv and acted. But in
agreement with the way this precept works, we are now all
enjoying the fruits of his action.



As a result of this discussion group, I have had the opportunity
of working with many colleagues from all over India and
beyond, which has been for me a wonderful experience. So
thank you all, especially G. Arunkumar, V. Arvind, T. Tamizh
Chelvam, Angsuman Das, Saul Freedman, T. Kavaskar, Ranjit
Mehatari, Lavanya Selvaganesh, and Swathi V. V.
I want to try to summarise some of the progress we have made.
The picture on the cover page suggests the beautiful country
we have begun to explore; there are more good things to find.



Summary

I will report progress on the following topics:
I When is the power graph a cograph?
I Clique number of the power graph and a new constant
I Matching number of the power graph
I A two-dimensional extension of the hierarchy
I Are zero-divisor graphs of local rings universal?

But I stress that this is not a complete account of research
arising from RDGG. More is on the way!



The hierarchy

I will be mainly discussing the hierarchy, but let me briefly
remind you of the graphs on G, with the rule for joining x to y:
I Pow(G), the power graph: one of x and y is a power of the

other;
I EPow(G), the enhanced power graph: 〈x, y〉 is cyclic;
I DCom(G), the deep commuting graph: the inverse images

of x and y commute in every central extension of G;
I Com(G), the commuting graph: xy = yx;
I NGen(G), the nongenerating graph: 〈x, y〉 6= G.

The first four form a hierarchy under inclusion of edge sets,
and the fifth is at the top if G is either non-abelian or not
2-generated.



When is the power graph of G a cograph?

A cograph is a graph containing no induced subgraph
isomorphic to the 4-vertex path.
Note that the class of groups whose power graph is a cograph
is subgroup-closed.
This was one of the questions I asked in my introductory
lectures. At that stage, Pallabi Manna, Ranjit Mehatari and I
had determined all the nilpotent groups with this property:
groups of prime power order, and cyclic groups whose order is
the product of two distinct primes.
The paper has just been published:
I Pallabi Manna, Peter J. Cameron and Ranjit Mehatari,

Forbidden subgraphs of power graphs, Electronic J.
Combinatorics 28(3) (2021), Paper #P3.4

This result has been the key to further developments.



A companion problem

An EPPO group is one in which every element has prime
power order.

Theorem
For a finite group G, the following are equivalent:
I G is an EPPO group;
I the power graph of G is equal to the enhanced power graph;
I the Gruenberg–Kegel graph of G is a null graph.

Groups having these equivalent properties also have the property that
their power graphs are cographs.
These groups were investigated by Higman in 1957. By 1962,
Suzuki had found all the simple EPPO groups; but the
complete determination is very recent, by Natalia Maslova and
me, and not yet published.



Manna, Mehatari and I have succeeded in determining all
non-abelian finite simple groups whose power graph is a
cograph, up to some hard number theoretic problems.
I PSL(2, q), with q a prime power. If q is a power of 2, put
{l, m} = {q− 1, q + 1}; if it is an odd prime power, put
{l, m} = {(q− 1)/2, (q + 1)/2}.
Then the power graph of PSL(2, q) is a cograph if and only
if each of l and m is either a prime power or the product of
two distinct primes.

I Sz(q), with q an odd power of 2 (greater than 2). Let
{k, l, m} = {q− 1, q +

√
2q + 1, q−

√
2q + 1}.

Then the power graph of Sz(q) is a cograph if and only if
each of k, l and m is either a prime power or the product of
two distinct primes.



Apart from these, there is only one further non-abelian simple
group whose power graph is a cograph: PSL(3, 4).
The necessity of the conditions for PSL(2, q) and Sz(q) is
because these groups have cyclic subgroups of orders (k), l and
m. The sufficiency, and the analysis of the remaining simple
groups, requires detailed knowledge of the finite simple groups
and their subgroups.
However, the story of EPPO groups suggests that finishing the
job may still be some way off.



The clique number of the power graph

A formula for the clique number (the size of the largest
complete subgraph) of the power graph of a finite group G was
found by Alireza, Erfanian and Abbas.
In reworking their proof, I have (I think) added something
interesting.
Since the power graph is a spanning subgraph of the enhanced
power graph, we have ω(Pow(G)) ≤ ω(EPow(G)). In my
paper in the International Journal of Group Theory, I showed that
there is an inequality in the other direction: there is a function F
such that ω(EPow(G)) ≤ F(ω(Pow(G))). I asked for the best
possible function. The function I gave there was exponential,
but the correct value is a little faster than linear (i.e.
O(n log log n)).



Cyclic groups

Any edge of the power graph of a group is contained in a cyclic
subgroup of the group. A set of group elements with the
property that any two generate a cyclic group must be
contained in a cyclic subgroup. So any clique is contained in a
cyclic subgroup, and we have

ω(Pow(G)) = max{ω(Pow(C)) : C cyclic subgroup of G}.

So the problem is to find the clique number of the power graph
of the cyclic group of order n.



Define the number-theoretic function f by f (n) = ω(Pow(Cn)),
where Cn is the cyclic group of order n.

Theorem
The function f is given by the recurrence
I f (1) = 1;
I for n > 1,

f (n) = φ(n) + f (n/p),

where φ is Euler’s totient function and p is the smallest prime
divisor of n.

Proof.
The φ(n) generators of Cn are dominating vertices and so lie in
every maximal clique. Show that the remainder of the clique is
contained in a proper subgroup, and the best we can do is to
take the largest proper subgroup.



A bound and a constant

From this theorem, it is relatively easy to prove that
f (n) ≤ 3φ(n).
In fact,

lim sup(f (n)/φ(n)) = 2.6481017597 . . .

The analytic formula for the constant is

∑
k≥0

k

∏
i=1

1
pi − 1

,

where p1, p2, . . . are the primes in order.

Problem
Find all limit points of the ratio f (n)/φ(n). (The number above is the
largest.)



All finite groups

We saw that ω(Pow(G)) = max{f (m)}, where f is the function
defined earlier and m runs over all orders of elements of G. In
fact it is easy to see that, if a | b, then f (a) ≤ f (b); so it is enough
to maximize over orders which are maximal in the divisibility
order.
We note in passing that the maximal cliques in the enhanced
power graph are maximal cyclic subgroups, so
ω(EPow(G)) = max{m}, where m runs over the same set.
If it were true that f were monotonic, then we would have
ω(Pow(G)) = f (ω(EPow(G)), but this is false. For the group
G = PGL(2, 11), the maximal orders of elements (in the
divisibility ordering) are 10, 11 and 12; and f (10) = f (12) = 9,
but f (11) = 11; so ω(EPow(G)) = 12 and ω(Pow(G)) = 11.



A bound

In any case, we have ω(Pow(G)) ≥ f (ω(EPow(G)). Also
f (n) ≥ φ(n), and φ(n) ≥ e−γn/ log log n, where γ is the
Euler–Mascheroni constant. Together these show that, if
ω(Pow(G)) = m, then ω(EPow(G)) ≤ cm log log m.
It is known that the inequality for φ(n) is essentially sharp, so
this bound cannot be improved.
These results are in the survey with Ajay Kumar, Lavanya
Selvaganesh and T. Tamizh Chelvam.



An observation and a problem

Theorem
A finite group G satisfies ω(Pow(G)) = ω(EPow(G)) if and only if
the maximum order of an element of G is a prime power.
I do not have a simple description of this class of groups.
However, this observation leads to some very general
problems:

Question
Let A and A′ be two graph types in the heirarchy, and p a monotonic
graph parameter. Describe the finite groups G which satisfy
p(A(G)) = p(A′(G)).
Results on this would extend known results on the groups for
whith A(G) = A′(G).



Matching number of power graphs

The matching number of a graph is the largest size of a set of
pairwise disjoint edges.
V. V. Swathi talked about the matching number of power
graphs in RDGG in June. Subsequently, she and I have been
working on this.
If G has odd order, then Pow(G) has a matching covering all
but one vertex – just match each element with its inverse. So
assume that |G| is even.
A tool for studying matching number is the “alternating chain
argument”. We used such an argument to show the following:

Theorem
Let G be a finite group, and let S = {g ∈ G : g2 = 1} be the set
consisting of the identity and the involutions in G. Then there is a
matching of maximum size in Pow(G) in which the set of unmatched
vertices is contained in S.



Groups with unique involution

Corollary

Let G be a finite group with a unique involution. Then Pow(G) has a
perfect matching (one whose edges cover all vertices).

Proof.
Take a matching as in the theorem. If there are unmatched
vertices, they must be the identity and the involution; but these
are joined, and we may add that edge to the matching.
The converse is false.
Groups with a unique involution are essentially known, but the
classification is not as well known as it should be. I will sketch
how it goes. This is based on a paper I wrote with Laszlo Babai
in 2000. (The classification question was asked by Coxeter, who
observed that binary polyhedral groups have unique
involutions.)



Theorem
I Let G be a group with a unique involution z. Then G/〈z〉 has

cyclic or dihedral Sylow 2-subgroups.
I Conversely, let H be a group with cyclic or dihedral Sylow

2-subgroup. Then there is a group G, unique up to isomorphism,
having a unique involution z, such that G/〈z〉 ∼= H.

Proof.
The first part is straightforward, since a Sylow 2-subgroup of G
has a unique involution, and such groups were classified by
Burnside: they are cyclic or generalized quaternion, and the
quotient by the involution is cyclic or dihedral.
The second part depends on a cohomological argument
suggested by George Glauberman; I refer to my paper with
Babai.



Theorem
Let G be a group with cyclic or dihedral Sylow 2-subgroups. Let
O(G) be the largest normal subgroup of G of odd order. Then
G/O(G) is isomorphic to one of the following:
I a subgroup of PΓL(2, q) containing PSL(2, q), where q is an odd

prime power;
I the alternating group A7;
I a Sylow 2-subgroup of G.

Proof.
This follows from Burnside’s transfer theorem (in the cyclic
case, when only the last conclusion is possible) and the
Gorenstein–Walter theorem (in the dihedral case).



Abelian groups

Theorem
Let G be a finite abelian group of even order. Let I(G) be the set of
involutions in G, and O(G) the subgroup consisting of the elements
of odd order in G.
I If |O(G)| ≥ |I(G)|, then Pow(G) has a perfect matching.
I Otherwise, the number of unmatched vertices in a matching of

maximum size is |I(G)| − |O(G)|.
I The same statements hold for EPow(G).

The first statement is false for non-abelian groups. The
symmetric group S3 has three involutions and three elements of
odd order, but a maximum matching has only two edges,
leaving two vertices uncovered.
However, in connection with the general problem posed earlier,
we do not know a group G for which the matching numbers of
Pow(G) and EPow(G) are unequal. Are they always equal??



A bigger playground

As a result of Lavanya Selvaganesh’s talk, I have been able to
enlarge considerably the class of potentially interesting graphs
defined on groups. The hierarchy I lectured about is
one-dimensional, but now it has grown into a second
dimension.
Let A be a type of graph defined on groups (such as power
graph or commuting graph), and B an equivalence relation on a
group (such as conjugacy or “same order”). Let [g]B denote the
B-equivalence class containing g.
I define the B superA graph of a group G as follows. The vertex
set is the set of all elements of G. We join g to h if there are
elements g′ ∈ [g]B and h′ ∈ [h]B such that {g′, h′} is an edge of
the A graph on G.
Thus Lavanya’s superpower graph is now called the order
superpower graph, to distinguish it from the conjugacy
superpower graph.



A two-dimensional hierarchy

Now as the type A of graph moves up through the hierarchy,
the edge set of the A graph on G increases, and so the edge set
of the B superA graph also increases.
But also, as the equivalence relation B becomes successively
coarser, the edge set of the B superA graph also increases.
If B is the relation of equality, then the B superA graph of G is
just the A graph. If G is abelian, then conjugacy coincides with
equality, so the conjugacy superA graph is just the A graph.
This is not the case in general.
Can we prove anything about these graphs? As a “proof of
concept”, I present a theorem about the groups for which one
of these graphs is complete. In the table following, condition
(∗) means that G contains an element whose order is equal to
the exponent of G.



Theorem
The following table describes groups whose power graph, enhanced
power graph, commuting graph, or their conjugacy or order
supergraph is complete.

power graph enhanced commuting
power graph graph

basic cyclic cyclic abelian
p-group

conjugacy cyclic cyclic abelian
p-group

order p-group (∗) (∗)



A sample proof

I will prove that the conjugacy supercommuting graph of G is
complete if and only if G is abelian. From this it follows that, if
either the conjugacy superpower graph or the conjugacy
superenhanced power graph are complete, then G is abelian; so
the second row of the table coincides with the first.
The “if” direction is trivial, so suppose that G is a group whose
conjugacy supercommuting graph is complete. This means
that, for any two elements g, h ∈ G, there is a conjugate of h
with commutes with g.
An old result of Jordan says that if H is a proper subgroup of a
group G, then there is a conjugacy class in G disjoint from H.
Taking H = CG(g) (the centralizer of g in G), we see that, if
H 6= G, there is a conjugacy class none of whose elements
commutes with g, a contradiction. So CG(g) = G, whence
g ∈ Z(G). But this should hold for all g ∈ G; so G is abelian.



Are zero-divisor graphs universal?

In my lectures I said something about which finite graphs can
be embedded as induced subgraphs in various interesting
graphs on groups.
Let us call a class of graphs universal if every finite graph is
embeddable in some graph in the class.
I mentioned that the enhanced power graphs, the deep
commuting graphs, the commuting graphs, and the generating
graphs of finite groups are all universal. (Power graphs are not,
since they are comparability graphs of partial orders, and hence
so are all their induced subgraphs.)
After the RDGG talk by T. Tamizh Chelvam, the question was
raised of whether zero-divisor graphs of rings are universal. I
will report on this. By convention, in what follows, all rings are
commutative rings with identity. The vertices of the
zero-divisor graph are the zero-divisors, and a and b are joined
if ab = 0.



General finite rings

Theorem
The zero-divisor graphs of finite commutative rings with identity are
universal.

Proof.
A very simple proof of this (using only Boolean rings) was
given by G. ArunKumar. We can represent any graph as an
intersection graph (the vertices are subsets of a set, joined if
their intersection is non-zero). So an intersection graph
representation of the complement of a given graph embeds it in
the zero-divisor graph of a Boolean ring (whose elements are
all subsets of a set, with symmetric difference as sum and
intersection as product).



Local rings

A local ring is a ring with a unique maximal ideal. Any finite
ring is isomorphic to a direct sum of local rings. Are the
zero-divisor graphs of finite local rings universal?

Theorem
If R is a finite local ring whose maximal ideal is principal (generated
by a single element), then its zero-divisor graph is a threshold graph.
Here a threshold graph is one whose vertices have weights,
and two vertices are joined if the sum of their weights exceeds
some threshold.
However, T. Kavaskar pointed out that this is not true in
general. We have characterized rings whose zero-divisor
graphs are threshold, and proved a universality result:

Theorem
Every finite graph is isomorphic to an induced subgraph of the
zero-divisor graph of some finite commutative local ring.



. . . for being part of this research discussion group.

Please keep in touch, and see if we can prove more great results
about graphs and groups!
As T. S. Eliot said, in a commentary on the Bhagavad-Gita in his
poem The Dry Salvages,

Not fare well,
But fare forward, voyagers.
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