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I am going to tell you about a theorem which I regard as one of
the rare good effects of the Covid pandemic: the main theorem
was proved during the first lockdown in Britain.

It started out as an attempt to describe the combinatorial
structures associated with “diagonal groups”, but expanded to
include Latin squares, synchronizing automata, a
generalisation of arcs in projective spaces, graph
homomorphisms, and many other topics in discrete
mathematics.
So welcome to the feast!
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Permutation groups

Throughout, G will denote a permutation group on Ω.

G is transitive if no non-trivial subset of Ω is G-invariant; it is
primitive if no non-trivial partition of Ω is G-invariant. (The
trivial subsets or partitions are those invariant under the
symmetric group on Ω.
Many (but not all) questions about permutation groups can be
reduced to the case where the group is primitive. This has been
a standard technique since Jordan in the 19th century.
More specifically, a permutation group can be embedded in a
subcartesian product of transitive groups, while a transitive
group (at least in the finite case) has a similar embedding in a
wreath product of primitive groups.
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The O’Nan–Scott Theorem

The following theorem (and indeed rather more) was proved
by Michael O’Nan and Leonard Scott (independently) in 1979.
The version I need here is little more than is in Jordan’s Traité
des Substitutions – the important extra information is all in the
wreath product case.

Theorem
A finite primitive permutation group is of one of the following types:
affine, wreath product, diagonal, or almost simple.
Affine groups preserve affine spaces; wreath products preserve
Cartesian structures (as I discuss later); almost simple groups
form a ragbag, and there is no hope for a uniform description
of the structures they act on.
Our aim is to understand the geometric structure underlying
diagonal groups. But, unlike in the O’Nan–Scott theorem, we
do not assume that these groups are finite or primitive.
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Background 2

Things went on slowly, but at the six-month programme on
groups at the Isaac Newton Institute in Cambridge in 2020, we
hoped to bring it to a conclusion.

But the coronavirus had other ideas. So we put it on hold and
all went home.
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An analogy

If you know any projective geometry, you will be aware of the
following phenomenon:

I a 1-dimensional projective geometry (a projective line) has
no incidence structure at all; it is just a set.

I 2-dimensional projective geometries (projective planes)
exist in wild profusion, so that there is no hope of
classification.

I For higher dimensions, a projective geometry is highly
structured, and is coordinatised by an algebraic object (a
division ring).

I am going to show you that the geometries associated with
diagonal groups exhibit a very similar phenomenon: “wild
profusion” will mean arbitrary Latin squares, while the
“algebraic object” will be a group.
The analogy will be quite close: I will show you the principle
which plays the role of Desargues’ Theorem.
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Diagonal groups

Let m be a positive integer and T a group, finite or infinite. I define
the diagonal group D(T, m) to be the group of permutations of
Ω = Tm generated by the following transformations. (I put the
elements of Ω in square brackets to distinguish them from group
elements.)

I The group Tm acting by right multiplication. (Let
Tm = T1 × · · · × Tm, where Ti acts on the ith coordinate.)

I another copy T0 of T acting by simultaneous left multiplication
of all coordinates by the inverse.

I Aut(T) acting in the same way on all coordinates.

I Sm acting by permuting the coordinates.

I An element τ:

[t1, t2, . . . , tm] 7→ [t−1
1 , t−1

1 t2, . . . , t−1
1 tm].

Don’t remember the details: this is just a group built from T and m.
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Partitions

Our geometry will be defined in terms of partitions. So here is a
brief introduction.

A partition of Ω can be thought of in any of three ways:
I a set of non-empty, pairwise disjoint subsets of Ω whose

union is Ω;
I the set of equivalence classes of an equivalence relation on

Ω;
I the kernel of a function F on Ω, that is, the set of inverse

images of points in the range of F.
The set P(Ω) of partitions of Ω is partially ordered by
refinement: P 4 Q if every part of P is contained in a part of Q.
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The partition lattice

With this order, P(Ω) is a lattice: any two partitions P and Q
have a unique infimum or meet P∧Q, and a unique supremum
or join P∨Q.

I P∧Q is the partition of Ω whose parts are all non-empty
intersections of a part of P and a part of Q.

I P∨Q is the partition into connected components of the
graph in which two points are adjacent if they lie in the
same part of either P or Q.

A subset of P(Ω) is a sublattice if it is closed under the meet
and join operations of P(Ω).
We also require the notion of a join-semilattice, closed under
join but maybe not under meet.
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Coset partitions

Let G be a group. For each subgroup H of G, consider the
partition PH of G into right cosets of H. We call this a coset
partition.

Now, if H and K are subgroups of G, then we have
I PH 4 PK if and only if H 6 K;
I PH ∧ PK = PH∩K;
I PH ∨ PK = P〈H,K〉.

So the collection of all coset partitions of G forms a sublattice of
P(G) which is isomorphic to the subgroup lattice of G, under
the map H 7→ PH.
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Structures for wreath products

These have many different descriptions. Praeger and
Schneider, who discussed them before moving on to diagonal
groups, call them Cartesian decompositions.

Graph theorists call them Hamming graphs. The name hints at
a connection with coding theory. Indeed, Delsarte called them
Hamming schemes. This description, however, loses the order
relation.
I will use the term Cartesian lattices.
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Cartesian lattices

The Boolean lattice Bn is the lattice of all subsets of {1, . . . , n}.

Let A be an alphabet, finite or infinite (with |A| > 1). Let
Ω = An be the set of all words of length n over the alphabet A.
For I ⊆ {1, . . . , n}, let QI be the partition of Ω corresponding to
the equivalence relation ≡I, where

(a1, . . . , an) ≡I (b1, . . . , bn)⇔ (∀j /∈ I)(aj = bj).

Now the partitions QI for I ⊆ {1, . . . , n} form a sublattice of the
partition lattice on Ω which is isomorphic to Bn by the map
I 7→ QI.
I will call this a Cartesian lattice. Note that the group of
permutations of Ω mapping the lattice to itself (as set of
partitions) is the wreath product Sym(A) Wr Sym({1, . . . , n}).
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Latin squares, 1

You probably think of a Latin square as something like this: a
square array of size n× n filled with letters from an alphabet of
size n, so that each letter occurs once in each row and column.

a b c
b c a
c a b

Latin squares exist in great profusion. There are more than
exp(m2) Latin squares of order m; exact numbers are only
known up to m = 11.
We are going to give a different definition. Let Ω consist of the
n2 cells of the array. We have three partitions of Ω: R, the rows;
C, the columns; and L, the letters (the partition into sets of cells
containing the same letter).
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Latin squares, 2

a b c
b c a
c a b

1 2 3
4 5 6
7 8 9

I R = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
I C = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}};
I L = {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}.

Together with E (the partition into singletons) and U (the
partition with a single part), these three partitions form a
lattice. It has the very special property that, if one of R, C, L is
omitted, the resulting four partitions form a Cartesian lattice
on Ω.
This property characterises Latin squares.
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Latin squares, 3

With the partition definition, we could define an
automorphism of a Latin square to be a permutation of Ω
fixing {R, C, L} setwise. (These mappings are usually called
paratopisms in the Latin squares literature.)

However, one case is interesting to us: the Cayley table of a
group T is a Latin square, and its paratopism group is the
diagonal group D(T, 2) defined earlier. (This fact is maybe not
as well known as it should be!)
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Diagonal semilattices

Let us return to diagonal groups for a moment. Recall that
D(T, m) acts on Tm, where m copies T1, . . . , Tm of T act on the
corresponding coordinate of Tm by right multiplication, while
the last factor T0 acts by simultaneous left multiplication of all
coordinates by the inverse.

Let Q0, . . . , Qm be the coset partitions of Ω = Tm corresponding
to these groups. Thinking of Tm as a group, these are the
coordinate partitions of the coordinate groups T1, . . . , Tm and
the diagonal subgroup of Tm (hence the name).
The join-semilattice generated by Q0, . . . , Qm (it is not a lattice
for m > 3) is an object which we will call a diagonal semilattice
and denote by D(T, m).

Theorem
The automorphism group of D(T, m) is the diagonal group D(T, m).
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The main theorem

Theorem
Let m > 2, and let Q0, Q1, . . . , Qm be partitions of Ω. Suppose that
any m of these partitions are the minimal non-trivial elements in an
m-dimensional Cartesian lattice on Ω.

I If m = 2, then {Q0, Q1, Q2}, together with E and U, form a
Latin square, unique up to paratopism; every Latin square arises
in this way.

I If m > 3, then there is a group T, determined up to isomorphism,
such that the join-semilattice generated by {Q0, . . . , Qm} is the
diagonal semilattice D(T, m).

As promised, for m = 2 the situation is chaotic, but for m > 3
the algebraic structure coordinatising the semilattice (the group
T) emerges naturally from the combinatorics.
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Proof sketch

We have seen that, for m = 2, we get a Latin square, unique up
to the natural notion of isomorphism.

The proof for m > 3 is by induction. The inductive step is not
entirely trivial, requiring a little trick. But the really hard work
is starting the induction at m = 3.
In this case we have a special kind of Latin cube. The interval
[Qi, U] in the lattice is a Latin square, and these Latin squares fit
together in an intricate way. The steps are:
I Prove that all the Latin squares are isomorphic.
I Prove that one of them is a group.
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Frolov and Albert

A quadrangle in a Latin square is a set of four cells lying in two
rows and two columns. The square is said to satisfy the
quadrangle condition if, given two quadrangles, if we can
match up the cells so that three of the matched pairs are equal,
then the fourth are also equal.

Theorem (Frolov)

A Latin square satisfying the quadrangle condition is paratopic to the
Cayley table of a group.

Theorem (Albert)

If a Latin square is paratopic to the Cayley tables of groups G1 and
G2, then G1 and G2 are isomorphic.
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A small mystery

Frolov proved his theorem in 1890. This was well after Dyck’s
axiomatisation of groups, and Cayley’s construction of the
Cayley table and his proof of Cayley’s Theorem. But Frolov
does not use the word “group”, and doesn’t refer to either
Dyck or Cayley.

He shows, in effect, that if the quadrangle condition holds then
the rows of the Latin square, regarded as permutations, are
closed under composition.
Frolov was not a professional mathematician. He was a French
army officer.
In terms of the analogy I made earlier with projective geometry,
the quadrangle condition plays the role of Desargues’ Theorem:
most projective planes don’t satisfy Desargues’ theorem, but a
plane embeddable in a space of higher dimension does.
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The diagonal graph

There is a close connection between the Cartesian lattice and
the Hamming graph. Recall that An is the set of words of length
n over the alphabet A. The Hamming graph has vertex set An;
two vertices are joined if as words they agree in all positions
except one (that is, they have Hamming distance 1).

Said otherwise, two elements of An are joined if they are
contained in the same part of a minimal non-trivial partition of
the Cartesian lattice.
In a similar way, we can construct a graph from the diagonal
semilattice: two vertices are joined if they are contained in the
same part of a minimal non-trivial partition of D(T, m).
If m > 2, or if |T| > 4, then we can reconstruct the semilattice
from the graph, since the parts of the minimal partitions are
cliques of size |T|, and conversely. It follows that the
automorphism group of the diagonal graph in these cases is the
same as that of the diagonal semilattice, namely the diagonal
group.
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We call this the diagonal graph ΓD(T, m). It is an interesting
graph, worth further investigation. I mention a few things
about it.

I Except for a few very small cases, its automorphism group
is the diagonal group D(T, m).

I For m = 2, it is a (strongly regular) Latin square graph,
while for |T| = 2, it is a (distance-transitive) folded cube.

I Except for a few very small cases, its clique number is |T|.
I If m is odd, or if |T| is odd, or if the Sylow 2-subgroups of

T are non-cyclic, its chromatic number is also |T|.
I will look briefly at the “small cases”, which have m = 2 and
|T| ≤ 4, that is, Latin squares of order at most 4. The interesting
case is order 4.
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For Vijay

There are just two Latin squares of order 4, up to paratopism;
these are the Cayley tables of the two groups of order 4, namely
C4 and C2 × C2.

In a Latin square, there may be cliques of order 4 which are not
contained in a row, column, or letter. These arise from
intercalates, subsquares of order 2. I illustrate for the Cayley
table of C4.

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

The Cayley table of C4 contains just four intercalates. But they
can be distinguished from rows, columns and letters by the fact
that they intersect the other 4-cliques in zero or two vertices. So
we cannot use them to reconstruct a Latin square structure.
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The Shrikhande graph

Hence the automorphism group of the corresponding Latin
square graph is the diagonal group D(C4, 2), with structure
(C4 × C4).(Aut(C4)× S3), of order 42.2.6 = 192.

The complement of this Latin square graph has the same
automorphism group. But this complement is the Shrikhande
graph.

This fails for the other case C2 × C2. This has many intercalates,
and we can build a different family of cliques defining the
graph. So it has twice as many automorphisms as expected
(1152 instead of 576).
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Chromatic number
I will say a bit more about the chromatic number of ΓD(T, m).

I There is a graph homomorphism from ΓD(T, m) to
ΓD(T, m− 2) (that is, a map on the vertex set taking edges
to edges). Such a map cannot increase chromatic number.

I ΓD(T, 1) is a complete graph of order |T|. It follows that,
for odd m, the chromatic number is |T|.

I For m even, we have χ(ΓD(T, m)) ≤ χ(ΓD(m, 2)), where
ΓD(m, 2) is the Latin square graph of the Cayley table of T.

I If the Cayley table has an orthogonal mate, this is a
colouring of the graph with |T| colours.

I By the Hall–Paige conjecture, whose proof depends on the
classification of finite simple groups, the Cayley table of T
has an orthogonal mate if and only if either |T| is odd or T
has non-cyclic Sylow 2-subgroups.

I If this is not the case, then it is conjectured that the
chromatic number of ΓD(T, 2) is |T|+ 2, and we conjecture
that the same holds for ΓD(m, 2) for all even m.
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The 1-dimensional case

I mentioned that the method we have used to define geometry
for a diagonal group fails when m = 1. The diagonal group
D(T, 1) is not without interest. It is a group acting on T; the two
factors T act, one by right and one by left multiplication; we
also have automorphisms of T and the inverse map.

In 1968, Peter Neumann, Charles Sims and James Wiegold
published a paper with the wonderful title “Counterexamples
to a theorem of Cauchy”.
Their counterexamples were diagonal groups D(T, 1), where T
is simple.
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Cauchy had “proved” that, if a primitive group has degree a
prime number plus one, then the group must be doubly
transitive. Neumann, Sims and Wiegold pointed out that, if T is
a finite simple group, then D(T, 1) is primitive but not doubly
transitive.

There are many simple groups whose order is one more than a
prime:
I |A5| = 59 + 1;
I |PSL(2, 7)| = 167 + 1;
I |A6| = 359 + 1;
I |PSL(2, 8)| = 503 + 1;

and so on.
A challenge to number theorists: Are there infinitely many
finite simple groups which give counterexamples to Cauchy’s
theorem in this way?
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More partitions

A set of r + 2 partitions, any two of which are the minimal
elements in a 2-dimensional Cartesian lattice, is nothing but a
set of r mutually orthogonal Latin squares. These are classical
objects going back to Euler, if not earlier.

We have begun investigating sets of m + r partitions, any m of
which are the minimal elements in an m-dimensional Cartesian
lattice, for r ≥ 2. Then by our main theorem, any m + 1 of the
partitions are the minimal elements in a diagonal semilattice
D(T, m) for some group T. One rather basic question which we
can’t answer is:

Problem
If r > 1, are all the groups T arising from sets of m + 1 partitions
isomorphic?
This is false in the case m = 2, even if all the Latin squares are
Cayley tables of groups.



More partitions

A set of r + 2 partitions, any two of which are the minimal
elements in a 2-dimensional Cartesian lattice, is nothing but a
set of r mutually orthogonal Latin squares. These are classical
objects going back to Euler, if not earlier.
We have begun investigating sets of m + r partitions, any m of
which are the minimal elements in an m-dimensional Cartesian
lattice, for r ≥ 2. Then by our main theorem, any m + 1 of the
partitions are the minimal elements in a diagonal semilattice
D(T, m) for some group T. One rather basic question which we
can’t answer is:

Problem
If r > 1, are all the groups T arising from sets of m + 1 partitions
isomorphic?

This is false in the case m = 2, even if all the Latin squares are
Cayley tables of groups.



More partitions

A set of r + 2 partitions, any two of which are the minimal
elements in a 2-dimensional Cartesian lattice, is nothing but a
set of r mutually orthogonal Latin squares. These are classical
objects going back to Euler, if not earlier.
We have begun investigating sets of m + r partitions, any m of
which are the minimal elements in an m-dimensional Cartesian
lattice, for r ≥ 2. Then by our main theorem, any m + 1 of the
partitions are the minimal elements in a diagonal semilattice
D(T, m) for some group T. One rather basic question which we
can’t answer is:

Problem
If r > 1, are all the groups T arising from sets of m + 1 partitions
isomorphic?
This is false in the case m = 2, even if all the Latin squares are
Cayley tables of groups.



The paper containing the main theorem is:

I R. A. Bailey, Peter J. Cameron, Cheryl E. Praeger, Csaba
Schneider, The geometry of diagonal groups, Trans. Amer. Math.
Soc., in press; arXiv 2007.10726

Related papers:

I R. A. Bailey, Peter J. Cameron, Michael Kinyon and Cheryl E.
Praeger, Diagonal groups and arcs over groups, Designs, Codes,
Cryptography, in press; arXiv 2010.16338.

I R. A. Bailey and Peter J. Cameron, The diagonal graph, J.
Ramanujan Math. Soc., in press; arXiv 2101.02451

I J. N. Bray, P. J. Cameron, Q. Cai, P. Spiga and H. Zhang, The
Hall–Paige conjecture, and synchronization for affine and
diagonal groups, J. Algebra 545 (2020), 27-42; arXiv 1811.12671



The paper containing the main theorem is:

I R. A. Bailey, Peter J. Cameron, Cheryl E. Praeger, Csaba
Schneider, The geometry of diagonal groups, Trans. Amer. Math.
Soc., in press; arXiv 2007.10726

Related papers:

I R. A. Bailey, Peter J. Cameron, Michael Kinyon and Cheryl E.
Praeger, Diagonal groups and arcs over groups, Designs, Codes,
Cryptography, in press; arXiv 2010.16338.

I R. A. Bailey and Peter J. Cameron, The diagonal graph, J.
Ramanujan Math. Soc., in press; arXiv 2101.02451

I J. N. Bray, P. J. Cameron, Q. Cai, P. Spiga and H. Zhang, The
Hall–Paige conjecture, and synchronization for affine and
diagonal groups, J. Algebra 545 (2020), 27-42; arXiv 1811.12671


