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My interest in the topic of graphs defined on groups was first
sparked by Shamik Ghosh, who asked a question about the
relation between the undirected and directed power graph.

Subsequent work with other authors led me to return to the
topic and write a survey article. Vijayakumar Ambat saw this
on the arXiv; he and Aparna Lakshmanan decided to set up a
research discussion on graphs and groups, run from CUSAT in
Kochi, Kerala.
So many new results were proved as a result of the research
discussion that my survey is now out of date! I would like to
thank Vijay and Aparna for this wonderful opportunity. I have
spent so long on-line in Kochi that I now consider myself a
virtual South Indian.
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Graphs on groups

The subject of this talk goes back to the mid-20th century, but
very recently has seen some very rapid development. In June
this year, I gave an 8-hour short course on it, and was still
unable to cover everything. So I will have to be selective.

The prototype for the graphs I will consider is the commuting
graph of a finite group G. The vertex set is G, and vertices x and
y are joined if and only if xy = yx. This graph encodes a
remarkable amount of information about the group. For a
simple example, the set of dominating vertices (joined to all
others) is the centre, and the closed neighbourhood of x is the
centralizer of x.
In an important paper in 1955, the first step towards the
Classification of Finite Simple Groups, Brauer and Fowler first
used the commuting graph (without actually defining it!) A
sample result: if G has more than one conjugacy class of
involutions, then any two involutions have distance at most 3
in the commuting graph (with the identity omitted).
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The aims

There are two reasons for defining graphs on algebraic objects
such as groups.

I As in the case of Brauer and Fowler, we can use the graph
to understand the group better.

I The graph may be interesting in its own right, or possibly
useful as a network; we want to calculate various
parameters of it.

I am going to give an example where a couple of interesting
graphs can be produced in this way. This involves another
graph defined on a group G, the power graph of G: we join x
and y if one is a power of the other. This is example is taken
from a recent survey of power graphs of groups, by Ajay
Kumar, Lavanya Selvaganesh, T. Tamizh Chelvam, and me,
published earlier this year.
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The power graph of M11

This concerns the Mathieu group M11, the smallest sporadic
finite simple group, with order 7920. The computations were
done in GAP.

The identity is joined to all other elements (this is true in any
group), so we delete it. In the resulting graph, elements of
orders 5 and 11 are joined only to their powers, so we have 44
complete graphs of size 10 and 396 complete graphs of size 4.
The remaining 4895 vertices carry a connected graph.
We perform two further reductions. First, we call two elements
closed twins if they have the same closed neighbourhood. We
can shrink each closed twin class to a single vertex, giving a
graph with 1540 vertives. Now analogously two elements are
open twins if they have the same open neighbourhood;
shrinking these equivalence classes to single vertices gives a
graph with 1210 vertices. No further twin reduction is possible.
Let Γ be the resulting graph.
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The automorphism group of Γ is just the Mathieu group M11. It
acts with four orbits O1, . . . , O4, with cardinalities 165, 165, 220
and 660. The matrix whose (i, j) entry is the number of edges
from a fixed vertex of Oi into Oj is

0 1 0 0
1 0 0 4
0 0 0 3
0 1 1 0

 .

Thus, the graph is bipartite, with bipartite blocks O1 ∪O4 and
O2 ∪O3, with diameter and girth 20 (surprisingly large). The
edges between O1 and O2 form a matching.
We get another interesting bipartite graph with vertex set
O2 ∪O3, two vertices joined if they lie in different orbits but
have a common neighbour in O4. This graph also has
automorphism group M11; it has bipartite blocks with sizes 165
and 220; it is semiregular with valencies 4 and 3, and has
diameter and girth equal to 10.
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The cast

Many graphs have been defined on groups. I will restrict
myself to just five. Let G be a group. Consider the following
graphs:

I The directed power graph DPow(G), with an arc from x to
y if y is a power of x. [The others are all undirected with
joining rules given.]

I The power graph Pow(G): one of x and y is a power of the
other (that is x→ y or y→ x in DPow(G)).

I The enhanced power graph EPow(G): x and y are both
powers of an element z (that is, z→ x and z→ y in
DPow(G)); equivalently 〈x, y〉 is cyclic.

I The commuting graph Com(G): xy = yx; equivalently,
〈x, y〉 is abelian.

I The non-generating graph NGen(G): 〈x, y〉 6= G.
Other graphs include the deep commuting graph, nilpotence
graph, solvability graph, and Engel graph.
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The hierarchy

The power graph, enhanced power graph, and commuting
graph form a hierarchy: that is, the edge set of each is a subset
of that of the next, so that each graph is a spanning subgraph of
the next. Moreover, unless G is a 2-generated abelian group, the
non-generating graph lies above of the hierarchy. We can put
the null graph at the bottom and the complete graph at the top.

The directed power graph clearly determines both the power
graph and the enhanced power graph, in a simple way. The
converse works “up to isomorphism”:

Theorem
For finite groups G1 and G2, the following conditions are equivalent:
I the directed power graphs are isomorphic;
I the power graphs are isomorphic;
I the enhanced power graphs are isomorphic.
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Equality
A natural first question is: When can two consecutive graphs in
the hierarchy be equal? We examine this from the bottom up.

I The power graph of G is null if and only if G is the trivial
group. (The identity is joined to all other elements.)

I The enhanced power graph of G is equal to the power
graph if and only if G has no subgroup Cp × Cq, where p
and q are distinct primes; equivalently, every element of G
has prime power order. Such groups are sometimes called
EPPO groups. The question of classifying them was first
raised by Higman in 1957. In 1963, Suzuki determined the
simple groups with this property; the complete
classification has been concluded recently.

I The commuting graph of G is equal to the enhanced power
graph if and only if G has no subgroup Cp × Cp with p
prime. Equivalently, the Sylow subgroups of G are cyclic
or possibly (for p = 2) generalized quaternion. Such
groups are also classified.
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I If G is non-abelian, then the commuting graph is equal to
the non-generating graph if and only if G is a minimal
non-abelian group. These groups were determined by
Miller and Moreno in 1904.

I Finally, the non-generating graph of G is complete if and
only if G is not 2-generated.

There are various ways we could try to extend these results.
For example, suppose that p is a monotonic graph parameter
(that is, adding edges cannot decrease its value). We could ask,
for which groups do two graphs in the hierarchy have the same
value of p?
Here is a simple example.

Theorem
The clique numbers of the power graph and enhanced power graph of
a group G are equal if and only if the largest order of an element of G
is a prime power.
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Here is a less trivial example, which I proved with V V Swathi
and M S Sunitha.

Theorem
For any finite group G, the power graph and enhanced power graph of
G have the same matching number.
This holds even though we do not have a formula for the
matching number! The proof involves taking a maximum
matching in the enhanced power graph, and showing that
edges not in the power graph can be replaced by edges in the
power graph to get a matching of the same size.
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Differences

The next obvious question is: if two graphs in the hierarchy are
not equal on a group G, what can be said about the graph
whose edge set is the difference of their edge sets?

The difference between the power graph and the null graph is
the power graph, and the difference between the complete
graph and the non-generating graph is the generating graph.
Both have been intensively studied.
Apart from this, rather little is known, apart from work of Saul
Freedman on the difference between the non-generating graph
and the commuting graph, for non-abelian groups.
Plenty of open problems!
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The power graph is perfect

A graph Γ is perfect if every induced subgraph has clique
number equal to chromatic number.

According to the easy part of Dilworth’s Theorem, the
comparability graph of a partial order is perfect.
Now the power graph is the comparability graph of the
directed power graph, which is a reflexive relation (if we add
loops) and is also transitive, that is, a partial preorder. It is easy
to show that it can be refined to a partial order without
changing the comparability graph. Hence:

Theorem
The power graph of a finite group is the comparability graph of a
partial order, and hence is perfect.
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Universality

Not every graph is embeddable as induced subgraph in the
power graph of a finite group, since any induced subgraph
must be a comparability graph (and so perfect). But this is the
only restriction. Moreover, for the other graph types in the
hierarchy, there is no restriction:

Theorem
I Let Γ be the comparability graph of a finite partial order. Then

there is a finite group G such that Γ is embeddable as induced
subgraph in the power graph of G.

I For any other graph type in the hierarchy, for any finite graph Γ,
there is a finite group G such that Γ is embedded in the graph of
that type defined on G.
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More on universality of differences

Theorem
Suppose that the edges of a finite complete graph are coloured red,
green and blue in any manner. Then there is an embedding of its
vertex set into a group G such that

I red edges belong to the enhanced power graph;
I green edges belong to the commuting graph but not the enhanced

power graph;
I blue edges do not belong to the commuting graph.

This theorem has as consequence that each of the following
graph types embeds all finite graphs:
I the enhanced power graph (ignore green/blue distinction);
I the commuting graph (ignore red/green distinction);
I the difference between the commuting graph and the

enhanced power graph (ignore red/blue distinction).
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This suggests many other related questions, most of which are
open.

In particular, I would like to know which 3-colourings can be
embedded so that red edges belong to the power graph, green
are in the enhanced power graph but not the power graph, and
blue not in the enhanced power graph.
It is necessary that the red edges form the comparability graph
of a partial order; also, if (a, b, c, d) is an induced path in the red
graph, then at least one of {a, c} and {b, d}must be green. Are
these conditions sufficient?
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Dominating vertices
Before investigating questions like connectedness, we need to
investigate which vertices are joined to all others. The identity
always has this property; but unless we remove such vertices,
the graph is trivially connected with diameter at most 2.

Theorem
I The vertices joined to all others in the power graph of G are all of

G, if G is a cyclic p-group; the identity and the generators, if G is
cyclic but not of prime power order; the centre, if G is
generalized quaternion; and the identity otherwise.

I The vertices joined to all others in the enhanced power graph of
G form a subgroup called the cyclicizer of G; this is the product
of the Sylow p-subgroups of Z(G) for p ∈ π, where π is the set
of primes p for which the Sylow p-subgroup of G is cyclic or
generalized quaternion.

I The vertices joined to all others in the commuting graph of G
form the centre of G.
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Connectedness

The vertices joined to all others in the non-generating graph of
a 2-generated group often, but not always form a subgroup;
this set contains the Frattini subgroup Φ(G), and also contains
Z(G) if G is non-abelian.

I will give a couple of the most spectacular recent results on
connectedness of some of these graphs. For graphs in the
hierarchy, the reduced graph means the graph obtained by
deleting the vertices joined to all others. (However, the
generating graph is the complement of the non-generating
graph, so it is more natural to delete the isolated vertices.)
The first theorem is due to Michael Giudici, Luke Morgan and
Chris Parker, and the second to Saul Freedman, and the third to
Tim Burness, Robert Guralnick and Scott Harper.
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The commuting graph

Theorem
I There is no upper bound for the diameter of the reduced

commuting graph of a finite group; for any given d there is a
2-group whose reduced commuting graph is connected with
diameter greater than d.

I Suppose that the finite group G has trivial centre. Then every
connected component of its reduced commuting graph has
diameter at most 10.
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The non-generating graph

Theorem
The reduced non-generating graph of a non-abelian finite simple
group has diameter at most 5.

It is possible that 5 can be reduced to 4 here. This would be best
possible since there are finite simple graphs whose reduced
groups whose reduced non-generating graph has diameter 4.
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The generating graph

Theorem
For a finite group G, let Γ be the induced subgraph of the generating
graph on the non-identity elements. Then the following conditions are
equivalent:

I every vertex has a neighbour (that is, there are no isolated
vertices);

I every two vertices have a common neighbour (this implies that
the diameter is at most 2);

I every proper quotient of G is cyclic.

In particular, if G is non-abelian simple, then deleting the
identity from the generating graph gives a graph of diameter 2.
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Clique number
An important parameter of a graph is the clique number, the
size of the largest induced subgraph. Can we determine this for
graphs in our hierarchy?

Some cases at least are straightforward:

Theorem
I The clique number of Com(G) is the order of the largest abelian

subgroup of G.
I The clique number of EPow(G) is the order of the largest cyclic

subgroup of G, that is, the largest order of an element of G

The first statement is easy since, if a set of elements in a group
G commute pairwise, then they generate an abelian subgroup
of G.
For the second, an analogous statement holds: if a set of
elements pairwise generate cyclic groups, then all together they
generate a cyclic group. This is a little less straightforward to
prove . . .
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Clique number of power graph

Using the principle on the last slide, we see that a clique in the
power graph of G is contained in a cyclic subgroup of G. So the
clique number of G is equal to the maximum clique number of
a cyclic subgroup of G. Since the power graph is perfect, this is
also the chromatic number.

Let f (n) be the clique number of Pow(Cn). The value of f (n)
was determined by Alireza, Ahmad and Abbas; I give a
simplified presentation, from which we learn a little more.

Theorem
The function f is given by the number-theoretic recurrence
I f (1) = 1;
I for n > 1, f (n) = φ(n) + f (n/p), where φ is Euler’s totient

function and p is the smallest prime divisor of n.
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The inductive step is proved by noting that the φ(n) generators
of Cn are joined to all other vertices, so lie in every maximal
clique; then show that the remaining vertices lie in a proper
subgroup, and choosing the largest subgroup gives the largest
value.

From the previous theorem, it is easy to show that
φ(n) ≤ f (n) ≤ 3φ(n). In fact, more is true:

Proposition

lim sup f (n)/φ(n) = 2.6481017597 . . . ,

where the constant on the right is given by

∑
k≥0

k

∏
i=1

1
pi − 1

,

where p1, p2, . . . are the primes in order.
The set {f (n)/φ(n) : n ∈N} has other limit points: can we find
them all?
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The function f is monotonic with respect to divisibility, but not
with the usual order; so it is not the case the
ω(Pow(G)) = f (ω(EPow(G))). For example, in the group
G = PSL(2, 11), the maximal orders with respect to divisibility
are 10, 11 and 12, so ω(EPow(G)) = 12; but f (10) = 9 = f (12)
but f (11) = 11, so ω(Pow(G)) = 11.



When is the power graph a cograph?
The final problem aims to extend the classification of EPPO
groups (groups with every element of prime power order).

A cograph is a graph containing no induced subgraph which is
a 4-vertex path. Cographs form an important class of graphs;
for example, they form the smallest class containing the
1-vertex graph and closed under disjoint union and
complementation.
With Pallabi Manna and Ranjit Mehatari, I have been
attempting to classify the finite groups whose power graph is a
cograph. The work is not complete yet: here are two of our
results.
I A nilpotent group whose power graph is a cograph is

either a group of prime power order or Cpq where p and q
are distinct primes.

I A non-abelian simple group whose power graph is a
cograph is either PSL(2, q) or Sz(q) for certain prime
powers q, or PSL(3, 4).
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Finally, let me repeat my gratitude to Vijayakumar Ambat and
Aparna Lakshmanan for the RDGG at CUSAT, and to the
organisers of this conference and workshop for the opportunity
to talk about this material.

for your attention!



Finally, let me repeat my gratitude to Vijayakumar Ambat and
Aparna Lakshmanan for the RDGG at CUSAT, and to the
organisers of this conference and workshop for the opportunity
to talk about this material.

for your attention!


