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Algebraic graph theory

Algebraic graph theory falls roughly into two parts:

I Linear algebra: properties of matrices associated with a
graph, especially its eigenvalues, and how they give
information about the graph;

I Group theory: automorphisms of graphs and
constructions of graphs from groups.

I will take you on a quick tour through these topics and the
connections between them.
Since Stephan Wagner will be talking about spectral graph
theory on Thursday I will spend more time on the second part.
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Two graphs
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Are these two graphs “the same”? More mathematically, are
they isomorphic, in the sense that there is a bijection from the
vertex set of the first to that of the second which maps edges to
edges and non-edges to non-edges?
Try it. You will fairly quickly construct an isomorphism.
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Graph isomorphism

If two graphs are isomorphic, then any graph-theoretic
property of one holds also for the other, and any
graph-theoretic parameter takes the same value on both graphs.

So it is important to be able to check this.
One of the big open problems in computational complexity
asks:

Problem
Can you decide in polynomial time whether two graphs are
isomorphic?
The last decade saw a major breakthrough by László Babai,
who gave an algorithm for graph isomorphism that runs in
quasi-polynomial time, that is, time O(exp(a(log n)c) for some
constants a and c. (This is polynomial if c = 1.)
However, for graphs of manageable size, practical algorithms
such as Brendan McKay’s nauty out-perform Babai’s algorithm.
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In matrix terms . . .

Let Γ be a graph with n vertices. Number the vertices from 1 to
n, and define the adjacency matrix A = A(Γ) to be the n× n
matrix with (i, j) entry 1 if the ith and jth vertices are adjacent,
and 0 if not.

Then A is a real symmetric matrix, so there is an orthogonal
matrix P such that PAP> is diagonal; the diagonal entries are
the eigenvalues of A. Said otherwise, Rn is an orthogonal direct
sum of eigenspaces of A.
If we re-number the vertices, by applying a permutation to the
labels, then the new adjacency matrix B satisfies B = QAQ>,
where Q is a permutation matrix (and so is orthogonal); thus B
has the same eigenvalues and multiplicities as A.
Thus, isomorphic graphs have the same eigenvalues and
multiplicities.



In matrix terms . . .

Let Γ be a graph with n vertices. Number the vertices from 1 to
n, and define the adjacency matrix A = A(Γ) to be the n× n
matrix with (i, j) entry 1 if the ith and jth vertices are adjacent,
and 0 if not.
Then A is a real symmetric matrix, so there is an orthogonal
matrix P such that PAP> is diagonal; the diagonal entries are
the eigenvalues of A. Said otherwise, Rn is an orthogonal direct
sum of eigenspaces of A.

If we re-number the vertices, by applying a permutation to the
labels, then the new adjacency matrix B satisfies B = QAQ>,
where Q is a permutation matrix (and so is orthogonal); thus B
has the same eigenvalues and multiplicities as A.
Thus, isomorphic graphs have the same eigenvalues and
multiplicities.



In matrix terms . . .

Let Γ be a graph with n vertices. Number the vertices from 1 to
n, and define the adjacency matrix A = A(Γ) to be the n× n
matrix with (i, j) entry 1 if the ith and jth vertices are adjacent,
and 0 if not.
Then A is a real symmetric matrix, so there is an orthogonal
matrix P such that PAP> is diagonal; the diagonal entries are
the eigenvalues of A. Said otherwise, Rn is an orthogonal direct
sum of eigenspaces of A.
If we re-number the vertices, by applying a permutation to the
labels, then the new adjacency matrix B satisfies B = QAQ>,
where Q is a permutation matrix (and so is orthogonal); thus B
has the same eigenvalues and multiplicities as A.

Thus, isomorphic graphs have the same eigenvalues and
multiplicities.



In matrix terms . . .

Let Γ be a graph with n vertices. Number the vertices from 1 to
n, and define the adjacency matrix A = A(Γ) to be the n× n
matrix with (i, j) entry 1 if the ith and jth vertices are adjacent,
and 0 if not.
Then A is a real symmetric matrix, so there is an orthogonal
matrix P such that PAP> is diagonal; the diagonal entries are
the eigenvalues of A. Said otherwise, Rn is an orthogonal direct
sum of eigenspaces of A.
If we re-number the vertices, by applying a permutation to the
labels, then the new adjacency matrix B satisfies B = QAQ>,
where Q is a permutation matrix (and so is orthogonal); thus B
has the same eigenvalues and multiplicities as A.
Thus, isomorphic graphs have the same eigenvalues and
multiplicities.



Generalized line graphs

In the late 1970s, with Jean-Marie Goethals, Jaap Seidel and
Ernie Shult, I proved a conjecture of Hoffman, which I now
describe.

The line graph of a graph Γ is the graph L(Γ) whose vertices are
the edges of Γ, with two vertices of L(Γ) adjacent if and only if
the corresponding edges of Γ intersect.
A cocktail party graph CP(m) is the graph with 2m vertices
a1, . . . , am, b1, . . . , bm in which ai is joined to every vertex except
bi (and the same with a and b reversed).
Given a labelling l of the vertices of Γ with non-negative
integers, the corresponding generalized line graph is the union
of L(Γ) with cocktail party graphs CP(l(v)) for all vertices v of
Γ, where an edge {v, w} is joined to the cocktail party graphs
corresponding to v and w.
The next slide gives an example.
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A generalized line graph

The figure shows a graph Γ and the generalized line graph
L(Γ; (2, 1, 0, 3)).
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The theorem

Theorem
A connected graph with least eigenvalue −2 or greater is either a
generalized line graph or one of a finite number of other graphs.

The theorem is proved using the concept of root systems from
the theory of Lie algebras (though these arise in many other
areas of mathematics). The Petersen graph has smallest
eigenvalue −2 and is one of the finite list of exceptions. In fact,
the exceptional graphs are all represened by subsets of the
exceptional root system E8 with all products non-negative, two
vertices joined if their inner product is positive.
The complete list has not been computed, but we know all the
regular graphs with smallest eigenvalue −2 which are not line
graphs. Unsurprisingly, the Petersen graph is one of these.
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Applications

The theorem has various applications in graph theory. For
example, it is not hard to show that, if a generalised line graph
is regular, then it must be a line graph or a cocktail party graph;
so a regular graph with least eigenvalue −2 must be of one of
these types.

There are applications further afield. Peter Sarnak, who was
this year’s London Mathematical Society Hardy Lecturer, told
us about an application to an engineering problem involving
the design of waveguides.
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Cospectral graphs

The spectrum of the adjacency matrix does not determine the
graph up to isomorphism. (If graphs with adjacency matrices A
and B are cospectral then B = PAP> for some orthogonal
matrix P; to be isomorphic we require P to be a permutation
matrix.) This is why linear algebra doesn’t solve the graph
isomorphism problem.

Indeed there can be more than exponentially many graphs on n
vertices with the same spectrum, something which we now
explore.
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Strongly regular graphs

A graph Γ is strongly regular with parameters (n, k, λ, µ) if
I it has n vertices;

I every vertex has k neighbours;
I two vertices v, w have λ common neighbours if they are

adjacent and µ common neighbours if they are
non-adjacent.

Theorem
Two strongly regular graphs are cospectral if and only if they have the
same parameters.
Indeed the eigenvalues and their multiplicities can be
calculated from the parameters. The fact that the multiplicities
are non-negative integers puts constraints on the parameters,
which are necessary conditions for the existence of strongly
regular graphs.
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Latin squares

A Latin square of order n is an n× n array with each cell
containing an entry from an alphabet of size n, such that any
row or any column contains each symbol in the alphabet
exactly once.

Let V be the set of cells of an n× n Latin square. Form a graph
with vertex set V by joining two cells if they lie in the same row,
or same column, or have the same entry in the Latin square.
This Latin square graph is strongly regular, with parameters
(n2, 3(n− 1), n, 6).
Moreover, the Latin square graph determines the Latin square
uniquely (up to the appropriate notion of isomorphism of Latin
squares).
Now the number of non-isomorphic Latin squares is very
roughly (n/c)n2

for some constant c. This is asymptotically
bigger than exp(n2), giving more than exponentially many
cospectral graphs. Moreover, almost all of them have trivial
automorphism group.
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Steiner triple systems

A Steiner triple system consists of a set P of n points and a
collection B of triples or 3-element subsets of P with the
property that any two points of P lie in a unique triple.

The corresponding Steiner graph has vertex set B, two vertices
adjacent if they have non-empty intersection.
The Steiner graph is strongly regular, with parameters
(n(n− 1)/6, 3(n− 3)/2, (n + 3)/2, 9).
Steiner triple systems exist if and only if n is congruent to 1 or 3
(mod 6).
As before, for admissible values of n, there are so many of them
that we again obtain more than exponentially many cospectral
graphs, almost all of which have trivial automorphism groups.



Steiner triple systems

A Steiner triple system consists of a set P of n points and a
collection B of triples or 3-element subsets of P with the
property that any two points of P lie in a unique triple.
The corresponding Steiner graph has vertex set B, two vertices
adjacent if they have non-empty intersection.

The Steiner graph is strongly regular, with parameters
(n(n− 1)/6, 3(n− 3)/2, (n + 3)/2, 9).
Steiner triple systems exist if and only if n is congruent to 1 or 3
(mod 6).
As before, for admissible values of n, there are so many of them
that we again obtain more than exponentially many cospectral
graphs, almost all of which have trivial automorphism groups.



Steiner triple systems

A Steiner triple system consists of a set P of n points and a
collection B of triples or 3-element subsets of P with the
property that any two points of P lie in a unique triple.
The corresponding Steiner graph has vertex set B, two vertices
adjacent if they have non-empty intersection.
The Steiner graph is strongly regular, with parameters
(n(n− 1)/6, 3(n− 3)/2, (n + 3)/2, 9).

Steiner triple systems exist if and only if n is congruent to 1 or 3
(mod 6).
As before, for admissible values of n, there are so many of them
that we again obtain more than exponentially many cospectral
graphs, almost all of which have trivial automorphism groups.



Steiner triple systems

A Steiner triple system consists of a set P of n points and a
collection B of triples or 3-element subsets of P with the
property that any two points of P lie in a unique triple.
The corresponding Steiner graph has vertex set B, two vertices
adjacent if they have non-empty intersection.
The Steiner graph is strongly regular, with parameters
(n(n− 1)/6, 3(n− 3)/2, (n + 3)/2, 9).
Steiner triple systems exist if and only if n is congruent to 1 or 3
(mod 6).

As before, for admissible values of n, there are so many of them
that we again obtain more than exponentially many cospectral
graphs, almost all of which have trivial automorphism groups.
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Most strongly regular graphs?

If we list strongly regular graphs by number of vertices, then
no obvious pattern occurs.

Things are different if we list them by smallest eigenvalue,
because of a remarkable theorem of Arnold Neumaier. I will
only state a special case; a version of the theorem is true for any
prescribed smallest eigenvalue.

Theorem
Let Γ be a strongly regular graph with smallest eigenvalue −3. Then
either
I Γ is a complete multipartite graph with parts of size 3;
I Γ is a Latin square graph;
I Γ is a Steiner graph;
I Γ belongs to a finite list of exceptions.
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Regularity and symmetry

Being strongly regular is a very strong regularity condition on a
graph, but as we have seen, it does not imply the existence of
any symmetry. Can we strengthen the condition so as to obtain
symmetry from regularity?

A graph Γ is t-homogeneous if any isomorphism between
induced subgraphs of Γ on at most t vertices extends to an
automorphism of Γ. It is homogeneous if it is t-homogeneous
for all t ≤ n, where n is the number of vertices. This is a very
strong symmetry condition.
For example, 1-homogeneous means “vertex-transitive”, while
2-homogeneous means “transitive on vertices, ordered edges,
and ordered non-edges”. In group theoretic terms, the
automorphism group has rank 3, that is, three orbits on ordered
pairs of vertices.
Using the Classification of Finite Simple Groups, it is possible
to write down a list of all the 2-homogeneous finite graphs.
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The analogous regularity condition is as follows. Γ is t-tuple
regular if, whenever two sets A, B of vertices of size at most t
have isomorphic induced subgraphs, then the number of
common neighbours of A is equal to the number of common
neighbours of B.

Thus, 1-tuple regular means “regular”, while 2-tuple regular
means “strongly regular”.
The following theorem does not require CFSG: the proof is just
linear algebra.

Theorem
Let Γ be a 5-tuple regular graph. Then Γ is homogeneous, and is one
of the following:
I a disjoint union of complete graphs of the same size;
I a complete multipartite graph with all parts of the same size;
I the 5-cycle;
I the line graph of K3,3.
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Graphs and groups

In the group-theoretical side of algebraic graph theory, the
main concern is graphs with some symmetry, such as
vertex-transitive graphs.

But there are other results available. Here is an example. It is
known that almost all graphs have trivial automorphism group
(in the sense that the proportion of n-vertex graphs which have
a non-trivial automorphism tends rapidly to zero as n→ ∞).
What if we condition on the graph having some fixed group of
automorphisms?

Theorem
Let G be a finite group. Let an(G) be the number of n-vertex graphs Γ
for which G ≤ Aut(Γ), and bn(G) the number for which equality
holds. Then bn(G)/an(G) tends to a limit as n→ ∞.
The limit is not always one. Indeed, for nilpotent groups,
values of the limit are dense in [0, 1].
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Vertex-transitive graphs

The graph Γ is vertex-transitive if, for any two vertices, there is
an automorphism of Γ mapping one to the other. More
generally, if G is a subgroup of Aut(Γ), then Γ is
G-vertex-transitive if the automorphism in the definition can be
chosen to lie in G.

Vertex-transitive graphs are regular, but they form a proper
subclass of the class of regular graphs, and indeed have some
special properties, for example:

Theorem
A vertex-transitive graph on an even number of vertices has a perfect
matching (a set of pairwise disjoint edges covering the vertex set).
To examine vertex-transitive graphs further, we need to look at
permutation groups.
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Permutation groups

Let G be a permutation group on the set Ω. (This means that G
is a subgroup of the symmetric group, the group of all
permutations of Ω (with the group operation being
composition of permutations).

We say that G acts transitively on Ω if, for all α, β ∈ Ω, there
exists g ∈ G with αg = β.
The stabiliser in G of a point α ∈ Ω is the set

Gα = {g ∈ G : αg = α}.

It is in fact a subgroup of Ω. Stabilisers of different points in a
transitive group are conjugate subgroups.
We say that G acts regularly on Ω if it acts transitively on Ω and
Gα = {1} for some (and hence all) α ∈ Ω.
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Orbitals and orbital graphs

Let G be transitive on Ω. An orbital of G is an orbit of G on
Ω×Ω, the set of ordered pairs of elements of Ω. Thus there is a
unique diagonal orbital {(α, α) : α ∈ Ω}. G acts 2-transitively if
there is a unique non-diagonal orbital (that is, any two distinct
elements can be mapped to any other such pair by an element
of G).

A non-diagonal orbital O is self-paired if (α, β) ∈ O implies
(β, α) ∈ O.
Given an orbital O, we define the orbital graph to have vertex
set Ω and edge set O. It is a directed graph if and only if O is
not self-paired. (We think of an undirected edge as the union of
two oppositely-directed edges).
Each orbital graph admits G as an arc-transitive group of
automorphisms. If O is not self-paired and we define the graph
with edge set the union of O and the paired orbital, then we
obtain an undirected orbital graph, on which G acts
edge-transitively.
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All G-invariant graphs

Proposition

Let G be a transitive permutation group on Ω. Then any graph on the
vertex set Ω which is G-invariant has edge set the union of some
self-paired orbitals amd some pairs of paired orbitals for G.
A similar result describes all the G-invariant directed graphs:
the edge sets are arbitrary unions of orbitals.



Cayley graphs

If G acts regularly on Ω, then we can identify Ω with G, where
an arbitrary element α of Ω is identified with the identity, and
then β = αg is identified with g ∈ G.

With this identification, the action of G on itself is by right
multiplication. The orbitals are the sets Os = {(x, sx) : x ∈ G}
for each s ∈ G; the orbital Os is paired with Os−1 . Thus a
G-invariant undirected graph on G has edge set
{{x, sx} : x ∈ G, s ∈ S}, where S is an inverse-closed subset of
G \ {1}. Such a graph is called a Cayley graph for G.

Theorem
Γ is a Cayley graph for a group G if and only if Aut(Γ) contains a
subgroup acting regularly on the vertex set of Γ.
In particular, Cayley graphs form an important subclass of
vertex-transitive graphs.
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Vertex-transitive graphs and Cayley graphs

The converse is false: not every vertex-transitive graph is a
Cayley graph.

For example, consider the Petersen graph. Its automorphism
group is isomorphic to the symmetric group S5; the only
subgroup of order 10 in S5 is the dihedral group, which
contains involutions. But the vertices of the Petersen graph are
identified with 2-sets from the set on which S5 acts; and an
involution fixes the 2-sets corresponding to its cycles of
length 2.
Investigations by Brendan McKay, Cheryl Praeger and others
seem to show that “most” vertex-transitive graphs are Cayley
graphs, but as yet this is unproven. However, Gerd Sabidussi
showed that every vertex-transitive graph has a cover (in a
suitable sense) which is a Cayley graph.
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A warning

In the literature you will meet the concept of a normal Cayley
graph. Unfortunately, the term has two incompatible
meanings, both of which are very interesting.

I Some people call a Cayley graph Cay(G, S) normal if the
connection set S is a normal subset of G (closed under
conjugation). Equivalently, the graph admits both left and
right translations by G as automorphisms.

I A more recent usage which has become common is that a
Cayley graph for G is normal if the right translations by
elements of G form a normal subgroup of the full
automorphism group of the graph.

I’d like to change the terminology. Maybe we could call the first
type inner-automorphic since it is preserved by inner
automorphisms of G?
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Graphs on groups

I will finish with a topic which has recently seen a lot of
interest: this concerns graphs whose vertex set is a group, but
unlike (most) Cayley graphs it reflects the structure of the
group in some way, and it is invariant under all
automorphisms of the group.

Examples include
I the commuting graph: x and y are joined if xy = yx.
I the power graph: x and y are joined if one of them is a

power of the other.
I the generating graph: x and y are joined if the group 〈x, y〉

they generate is the whole of G.
The commuting graph was defined in the seminal paper of
Brauer and Fowler in 1955, arguably the first step in the long
journey to the Classification of Finite Simple Groups.
For a survey with more details, see my forthcoming survey in
the International Journal of Group Theory.
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A hierarchy

The graphs in the following list form a hierarchy, in the sense
that the edge set of each is contained in that of the next. (For
the penultimate step we require that the group is not
2-generated abelian.)

I The null graph.
I The power graph.
I The enhanced power graph: x and y are joined if they are

both powers of an element z (in other words, 〈x, y〉 is
cyclic).

I The commuting graph.
I The non-generating graph (the complement of the

generating graph).
I The complete graph.
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Directed power graph

There is also a directed power graph, with an arc x→ y if y is a
power of x. This relation is reflexive (if we add loops at each
vertex) and transitive, that is, a partial preorder, and the power
graph is its comparability graph. Using this we can show that
the power graph is the comparability graph of a partial order,
and hence (by Dilworth’s Theorem) it is perfect (that is, any
induced subgraph has clique number equal to chromatic
number).

Theorem
For two groups G1 and G2, the following are equivalent:
I their power graphs are isomorphic;
I their enhanced power graphs are isomorphic;
I their directed power graphs are isomorphic.

We do not have a good characterization of pairs of groups for
which these conditions hold.
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Isoclinism
The notion of isoclinism of groups was introducd by Philip
Hall. Roughly it says that the commutation structure of two
groups is the same.

Commutation in a group G can be regarded as a map
γ : G/Z(G)×G/Z(G)→ G′, where Z(G) and G′ are the centre
and derived subgroup of G. We say that G1 and G2 (with
commutation maps γ1 and γ2) are isoclinic if there are
isomorphisms α : G1/Z(G1)→ G2/Z(G2) and β : G′1 → G′2
such that

(α, α)γ2 = γ1β.

Theorem
If G1 and G2 are isoclinic groups of the same order, then their
commuting graphs are isomorphic.
The converse is known in some cases: simple groups, abelian
groups, extraspecial groups, . . . . Indeed, I know no examples
where it fails.
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Universality

We saw that the power graph is the comparability graph of a
partial order. In terms of induced subgraphs, this is the only
restriction; and there is no comparable restriction for the other
graphs in the hierarchy:

Theorem
I Let Γ be the comparability graph of a partial order. Then there is

a finite group G such that Γ is an induced subgraph of the power
graph of G.

I Let Γ be any finite graph. Then, for any of the other graph types
in the hierarchy, there is a group G such that Γ is an induced
subgraph of the graph of that type defined on the group G.

Some questions remain. For example, what is the smallest
group required to embed a given graph, or to embed all graphs
of a given order?
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Equality?

When can consecutive graphs in the hierarchy be equal? This
leads to some interesting group-theoretic questions:

I The power graph is null if and only if G is the trivial group
(for the identity is joined to all other vertices).

I The enhanced power graph is equal to the power graph if
and only if G contains no subgroup Cp × Cq where p and q
are distinct primes; equivalently, every element has prime
power order. These were first investigated by Higman in
1956, and have recently been classified.

I The commuting graph is equal to the enhanced power
graph if and only if G has no subgroup Cp×Cp for p prime.
These are the groups whose Sylow subgroups are cyclic or
generalized quaternion; again they have all been classified.
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I For G not 2-generated abelian, the commuting graph is
equal to the non-generating graph if and only if G is a
minimal non-abelian group. These groups were all
determined by Miller and Moreno in 1904.

I The non-generating graph is complete if and only if G is
not 2-generated.

If two graphs in the hierarchy are not equal, we can ask about
the graph whose edge set is the difference of their edge sets. In
the extreme cases, the difference between the power graph and
the null graph is the power graph, while the difference between
the complete graph and the non-generating graph is the
generating graph; both of these have been extensively studied.
Little else has been done apart from Saul Freedman’s work on
the difference between the non-generating graph and the
commuting graph.
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The power graph

I cannot summarise all that is known, but will give a few recent
results about the graphs in the hierarchy.

In the power graph of a group G, every edge (and hence every
clique) is contained in a cyclic subgroup of G. So the clique
number is the maximum clique number of the cyclic subgroups
of G.
Define the function f by the rule that f (n) is the clique number
of the power graph of Cn. Then f is given by the recurrence
I f (1) = 1;
I f (n) = φ(n) + f (n/p), where φ is Euler’s totient and p the

smallest prime divisor of n.
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Using this, one can show that φ(n) ≤ f (n) ≤ 3φ(n). In fact,

lim sup f (n)/φ(n) = 2.6481017597 . . . ;

the constant on the right is

c = ∑
k≥0

k

∏
i=1

1
pi − 1

,

where p1, p2, . . . are the primes in order.

This constant is a limit point of values of f (n)/φ(n). Can all the
limit points be described?
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The enhanced power graph

We know that the power graph is a spanning subgraph of the
enhanced power graph, with equality if and only if G is an
EPPO group (all elements of prime power order).

So, if p is a monotone graph parameter, then
p(Pow(G)) ≤ p(EPow(G)). Asking when equality holds is a
generalisation of the problem of determining the EPPO groups.
Here is one parameter for which there is a surprising answer:

Theorem
For any finite group G, the matching numbers of the power graph and
the enhanced power graph of G are equal.
However, we do not have a general formula for the matching
number!
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The commuting graph

The commuting graph is always connected, since the elements
of the centre are joined to all other vertices. So it is common to
study the reduced commuting graph, obtained by deleting the
centre.

The following striking result is due to Michael Giudici, Luke
Morgan and Chris Parker:

Theorem
I There is no upper bound for the diameter of the reduced

commuting graph of a finite group; for any given d there is a
2-group whose reduced commuting graph is connected with
diameter greater than d.

I Suppose that the finite group G has trivial centre. Then every
connected component of its reduced commuting graph has
diameter at most 10.
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The generating graph

The following theorem of Tim Burness, Bob Guralnick and
Scott Harper settles an old conjecture. Let Γ be the generating
graph of G with the identity vertex removed.

Theorem
For a finite group G, the following conditions are equivalent:
I every vertex of Γ has a neighbour (so there are no isolated

vertices);
I every two vertices of Γ have a common neighbour (so the

diameter is at most 2);
I every proper quotient of G is cyclic.

In particular, these conditions hold if G is a non-abelian finite
simple group.



The generating graph

The following theorem of Tim Burness, Bob Guralnick and
Scott Harper settles an old conjecture. Let Γ be the generating
graph of G with the identity vertex removed.

Theorem
For a finite group G, the following conditions are equivalent:

I every vertex of Γ has a neighbour (so there are no isolated
vertices);

I every two vertices of Γ have a common neighbour (so the
diameter is at most 2);

I every proper quotient of G is cyclic.

In particular, these conditions hold if G is a non-abelian finite
simple group.



The generating graph

The following theorem of Tim Burness, Bob Guralnick and
Scott Harper settles an old conjecture. Let Γ be the generating
graph of G with the identity vertex removed.

Theorem
For a finite group G, the following conditions are equivalent:
I every vertex of Γ has a neighbour (so there are no isolated

vertices);

I every two vertices of Γ have a common neighbour (so the
diameter is at most 2);

I every proper quotient of G is cyclic.

In particular, these conditions hold if G is a non-abelian finite
simple group.



The generating graph

The following theorem of Tim Burness, Bob Guralnick and
Scott Harper settles an old conjecture. Let Γ be the generating
graph of G with the identity vertex removed.

Theorem
For a finite group G, the following conditions are equivalent:
I every vertex of Γ has a neighbour (so there are no isolated

vertices);
I every two vertices of Γ have a common neighbour (so the

diameter is at most 2);

I every proper quotient of G is cyclic.

In particular, these conditions hold if G is a non-abelian finite
simple group.



The generating graph

The following theorem of Tim Burness, Bob Guralnick and
Scott Harper settles an old conjecture. Let Γ be the generating
graph of G with the identity vertex removed.

Theorem
For a finite group G, the following conditions are equivalent:
I every vertex of Γ has a neighbour (so there are no isolated

vertices);
I every two vertices of Γ have a common neighbour (so the

diameter is at most 2);
I every proper quotient of G is cyclic.

In particular, these conditions hold if G is a non-abelian finite
simple group.



The generating graph

The following theorem of Tim Burness, Bob Guralnick and
Scott Harper settles an old conjecture. Let Γ be the generating
graph of G with the identity vertex removed.

Theorem
For a finite group G, the following conditions are equivalent:
I every vertex of Γ has a neighbour (so there are no isolated

vertices);
I every two vertices of Γ have a common neighbour (so the

diameter is at most 2);
I every proper quotient of G is cyclic.

In particular, these conditions hold if G is a non-abelian finite
simple group.



The reference for the last part of my talk is
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