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I am not sure how an exercise session over Zoom will run; so
here is what I propose.

I am going to tell you a story, which involves seven beautiful
graphs. On the way we will meet a number of other topics in
discrete mathematics, from the outer automorphism of the
symmetric group S6 to the Steiner system on 22 points.
At several points along the way, I will not give proofs: your job
is to provide proofs of the assertions I make. I will use the tag

to indicate things you could try to prove. Some are easy,
some are hard. I have produced a separate file containing these
problems and solutions, available on request.
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Strongly regular graphs

A graph Γ is strongly regular with parameters (n, k, λ, µ) if it
has the following properties:

I it has n vertices;
I every vertex has k neighbours;
I the number of common neighbours of two vertices v and w

is λ if v and w are joined, or µ if they are not joined.
We will be talking about strongly regular graphs with no
triangles (that is, with λ = 0). For any n, the complete bipartite
graph Kn,n is strongly regular, with parameters (2n, n, 0, n).
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The magnificent seven

Apart from these rather trivial examples, only seven strongly
regular graphs with no triangles. Here they are with their
parameters:

I the 5-cycle C5, (5, 2, 0, 1);
I the Petersen graph, (10, 3, 0, 1);
I the Clebsch graph, (16, 5, 0, 2) (some people use this name

for the complementary graph);
I the Hoffman–Singleton graph, (50, 7, 0, 1);
I the Gewirtz graph, (56, 10, 0, 2);
I the 77-graph, (77, 16, 0, 4);
I the Higman–Sims graph, (100, 22, 0, 6) (actually found by

Mesner).
[Why not the 4-cycle C4? Because it is K2,2.]
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Introducing the cast

The 5-cycle needs no introduction.

The Petersen graph can be introduced by a drawing:
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It can also be described as follows. The vertices are the
2-element subsets of a set of size 5, two vertices joined if the
subsets are disjoint. These descriptions all give the same graph.
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2-element subsets of a set of size 5, two vertices joined if the
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It can also be described as follows. The vertices are the
2-element subsets of a set of size 5, two vertices joined if the
subsets are disjoint. These descriptions all give the same graph.



To discuss the Clebsch graph, I will first introduce the n-cube
Qn. The vertices are all the subsets of the set {1, 2, . . . , n}; two
vertices A and B are joined if their symmetric difference has size
1, that is, if either B = A∪ {x} with x /∈ A, or A = B∪ {x} with
x /∈ B. It is a regular graph with valency n on 2n vertices; it has
diameter n, and is antipodal: that is, for every vertex, there is a
unique vertex at distance n from it (the complementary subset).

Here are two graphs:
I Take the 5-cube and identify antipodal vertices.
I Take the 4-cube and add edges joining antipodal pairs of

vertices.
These two graphs are isomorphic. This is the Clebsch graph. It
is strongly regular with parameters (16, 5, 0, 2). Moreover, the
set of vertices at distance 2 from a given vertex induces the

Petersen graph. You should prove all this.
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The Clebsch graph

You have seen the Clebsch graph before, since it appears on the
conference web page, from which I borrowed this picture:

If you delete the central vertex and its five neighbours, you will
recognise what is left as our picture of the Petersen graph with
fivefold symmetry.
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Spectral theory

Let Γ be a strongly regular graph with parameters (n, k, λ, µ).
Let A be its adjacency matrix, J the all-1 matrix of order n, and I
the all-1 identity matrix. Note that B = J− I−A is the
adjacency matrix of the complement of Γ.

I AJ = kJ;
I A2 = kI + λA + µB.

So A has an eigenvalue k corresponding to the all-1 vector j; it
preserves the space j⊥ of real vectors with coordinate sum 0,
and on this space satisfies the quadratic equation
A2 = (k− µ)I + (λ− µ)A. Hence it has just two eigenvalues on
j⊥.
Conversely, if Γ is a graph whose adjacency matrix has j as an
eigenvector and has just two eigenvalues on j⊥, then Γ is

strongly regular.



Spectral theory

Let Γ be a strongly regular graph with parameters (n, k, λ, µ).
Let A be its adjacency matrix, J the all-1 matrix of order n, and I
the all-1 identity matrix. Note that B = J− I−A is the
adjacency matrix of the complement of Γ.
I AJ = kJ;

I A2 = kI + λA + µB.
So A has an eigenvalue k corresponding to the all-1 vector j; it
preserves the space j⊥ of real vectors with coordinate sum 0,
and on this space satisfies the quadratic equation
A2 = (k− µ)I + (λ− µ)A. Hence it has just two eigenvalues on
j⊥.
Conversely, if Γ is a graph whose adjacency matrix has j as an
eigenvector and has just two eigenvalues on j⊥, then Γ is

strongly regular.



Spectral theory

Let Γ be a strongly regular graph with parameters (n, k, λ, µ).
Let A be its adjacency matrix, J the all-1 matrix of order n, and I
the all-1 identity matrix. Note that B = J− I−A is the
adjacency matrix of the complement of Γ.
I AJ = kJ;
I A2 = kI + λA + µB.

So A has an eigenvalue k corresponding to the all-1 vector j; it
preserves the space j⊥ of real vectors with coordinate sum 0,
and on this space satisfies the quadratic equation
A2 = (k− µ)I + (λ− µ)A. Hence it has just two eigenvalues on
j⊥.
Conversely, if Γ is a graph whose adjacency matrix has j as an
eigenvector and has just two eigenvalues on j⊥, then Γ is

strongly regular.



Spectral theory

Let Γ be a strongly regular graph with parameters (n, k, λ, µ).
Let A be its adjacency matrix, J the all-1 matrix of order n, and I
the all-1 identity matrix. Note that B = J− I−A is the
adjacency matrix of the complement of Γ.
I AJ = kJ;
I A2 = kI + λA + µB.

So A has an eigenvalue k corresponding to the all-1 vector j; it
preserves the space j⊥ of real vectors with coordinate sum 0,
and on this space satisfies the quadratic equation
A2 = (k− µ)I + (λ− µ)A. Hence it has just two eigenvalues on
j⊥.

Conversely, if Γ is a graph whose adjacency matrix has j as an
eigenvector and has just two eigenvalues on j⊥, then Γ is

strongly regular.



Spectral theory

Let Γ be a strongly regular graph with parameters (n, k, λ, µ).
Let A be its adjacency matrix, J the all-1 matrix of order n, and I
the all-1 identity matrix. Note that B = J− I−A is the
adjacency matrix of the complement of Γ.
I AJ = kJ;
I A2 = kI + λA + µB.

So A has an eigenvalue k corresponding to the all-1 vector j; it
preserves the space j⊥ of real vectors with coordinate sum 0,
and on this space satisfies the quadratic equation
A2 = (k− µ)I + (λ− µ)A. Hence it has just two eigenvalues on
j⊥.
Conversely, if Γ is a graph whose adjacency matrix has j as an
eigenvector and has just two eigenvalues on j⊥, then Γ is

strongly regular.



Uniqueness

It can be shown that the Petersen and Clebsch graphs are the

unique strongly regular graphs with their parameters.

In other words,
I a graph having eigenvalues 3, 1, −2 with multiplicities 1, 5,

4 respectively is isomorphic to the Petersen graph;
I a graph having eigenvalues 5, 1, −3 with multiplicities 1,

10, 5 respectively is isomorphic to the Clebsch graph.
We are going to use this to look at a problem due to Allan
Schwenk.
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Partition into Petersens

The Petersen graph has 15 edges, one-third of the number in
the complete graph K10. Schwenk asked: Can K10 be
partitioned into three copies of the Petersen graph? He gave
the answer “No” by the following lovely argument.

Suppose we have such a partition. Let A1, A2, A3 be their
adjacency matrices, so that A1 + A2 + A3 = J− I.
Now j⊥ is 9-dimensional and contains the 5-dimensional
eigenspaces of A1 and A2 with eigenvalue 1. These spaces must
have non-zero intersection, since 5 + 5 > 9. On the intersection,
A3 = J− I−A1 −A2 has eigenvalue 0− 1− 1− 1 = −3. So A3
cannot be the adjacency matrix of a copy of the Petersen graph.
Indeed a graph with valency 3 having an eigenvalue −3 is
bipartite. So if we can find two disjoint Petersen graphs in K10,
the remaining edges form a bipartite graph.

Find such a partition.
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Partition into Clebsches

The Clebsch graph has 40 edges, one-third the number of K16.
So again we can ask: Can the edges of K16 be partitioned into
three Clebsch graphs?

Let us try the same trick. Suppose that A1 + A2 + A3 = J− I,
where at least A1 and A2 are adjacency matrices of Clebsch
graphs. Then A3 is the adjacency matrix of a graph of valency 5.
The space j⊥ has dimension 15 and contains the 10-dimensional
eigenspaces of A1 and A2 each with eigenvalue 1. So their
intersection has dimension at least 5, and on this space, A3 has
eigenvalue −1− 1− 1 = −3.
Now an application of Cauchy’s inequality shows that all 10
remaining eigenvalues of A3 are equal to 1. So A3 is the

adjacency matrix of another Clebsch graph.
In other words, if we can find two disjoint Clebsch graphs, then
what remains is also a Clebsch graph.
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Finding a partition

Let F be a finite field of order 16. Its multiplicative group has
order 15, and so the field contains five 5th roots of unity. Its
cosets are the sets of 5th roots of the three non-zero elements in
the subfield of order 4. Let A, B, C be these three sets.

Now consider the Cayley graphs of the additive group of F
with A, B and C as connection sets. Now one can show that no
set of three or four of the 5th roots of unity can sum to zero; so
the first Cayley graph has no cycles of length 3, and none of
length 4 except for (x, x + a, x + a + a′, x + a′, x). So the first
Cayley graph is strongly regular with parameters (16, 5, 0, 2).

Hence it is a Clebsch graph.
Multiplication by a cube root of unity permutes A, B, C
cyclically, so all three of the Cayley graphs is isomorphic to the
Clebsch graph.
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Application to Ramsey’s Theorem

I am sure you have all seen the proof that, if the edges of the
complete graph on six vertices are coloured red and blue, then
there must be a monochromatic triangle.

Six is best possible here; for the complement of C5 is C5, so on
five vertices, if we colour a cycle red and the other edges blue,
there is no monochromatic triangle.
What about three colours? It is not hard to show that, in K17, if
the edges are coloured with three colours, then there is a

monochromatic triangle. Seventeen is best possible. For in
the partition into three Clebsch graphs just constructed, if we
colour them with three different colours, there is no
monochromatic triangle.
This argument is due to Greenwood and Gleason.
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Moore graphs of diameter 2

A Moore graph of diameter d and valency k is a regular graph
of diameter d and valency k which has the largest possible
girth, namely 2d + 1.

In the case d = 2, such a graph is strongly regular with
parameters (n, k, 0, 1), with n = k2 + 1. Analysis of their
eigenvalues and their multiplicities shows that necessarily

k = 2, 3, 7 or 57.
For k = 2 and k = 3, there are unique graphs, namely the first
two of our magnificent seven: the 5-cycle and the Petersen
graph. Hoffman and Singleton constructed and showed unique
a Moore graph with valency 7; I will show you how this can be
done. The existence of a Moore graph of valency 57 is still
unknown.
For larger diameters, Bannai and Ito, and independently
Damerell, showed that the only possible graph is the
2d + 1-cycle.
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The outer automorphism of S6

It is a remarkable fact, first established by Sylvester, that the
symmetric group S6 has an outer automorphism (one not
induced by conjugation by a group element). In fact, no other
symmetric group, finite or infinite, has an outer automorphism.

I will sketch Sylvester’s construction.
Let A be a set of size 6. The complete graph on A has
I 15 edges;
I 15 one-factors (sets of three edges partitioning the vertex

set);
I 6 one-factorizations (sets of five one-factors partitioning

the edge set).
Let B be the set of 1-factorizations.
Two 1-factorizations share a unique common 1-factor, so
1-factors can be identified with edges on B. Similarly, edges on
A can be identified with 1-factors on B, and points of A with
1-factorizations on B. So doing the process twice brings us back.
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Now it is clear that any permutation π on A induces a
permutation π∗ on B; moreover (πσ)∗ = π∗σ∗. so the map
π 7→ π∗ is an isomorphism from S6(A) to S6(B), in other
words, induces an automorphism of S6. It is not an inner
automorphism, since the stabilizer of a 1-factorization fixes no
point of A.

Sylvester, who was a master at inventing offbeat terminology,
used the terms “duad”, “syntheme”, and “synthematic total”
for what I have called edges, 1-factors, and 1-factorizations.
Now we are going to use this set-up to construct a very
interesting graph, which was named the Sylvester graph by
Norman Biggs.
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The Sylvester graph

As described, let A be a 6-set and B the set of six
1-factorizations on A. Construct a graph as follows:

I The vertex set is A× B.
I There is an edge joining (a, b) to (a′, b′) if and only if the

edge {a, a′} belongs to the unique 1-factor belonging to b
and b′.

This is the Sylvester graph. Now one can show:
I The graph has valency 5.
I A vertex and its five neighbours have the property that

one is in each row and one in each column of the square
array A× B.

I Conversely, if two vertices lie in different rows and
different columns, then they lie at distance 1 or 2 in the
graph. Vertices in the same row or in the same column are

at distance 3.
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A curious sidelight

What is special about the number 6? We have seen that the
symmetric group of degree 6 has an outer automorphism,
which can be used to construct various combinatorial objects.
(We will soon see the Hoffman–Singleton graph, but others
include the projective plane of order 4 and the Steiner system
S(5, 6, 12).)

Another thing goes back to the work of Euler, and was proved
by Bose, Shrikhande and Parker: 6 is the only order greater
than 2 for which there do not exist orthogonal Latin squares.
Now statisticians, especially in agricultural research, use
orthogonal Latin squares of order n to construct certain block
designs called square lattice designs for n2 treatments. So what
to do if it happens that n = 6?
Recently in a paper with Rosemary Bailey, Leonard Soicher and
Emlyn Williams, we showed how the Sylvester graph can be
used to construct substitute designs which would be nearly as
good as the (non-existent) square lattice designs.
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The Hoffman–Singleton graph

Now we can construct the Hoffman–Singleton graph as
follows.

I The vertex set is {α, β} ∪A∪ B∪ (A× B). (Here A and B
are as we have discussed above.)

I Edges are as follows:
I {α, β}.
I {α, a} for all a ∈ A.
I {β, b} for all b ∈ B.
I {a, (a, b)} and {b, (a, b)} for all a ∈ A, b ∈ B.
I the edges of the Sylvester graph on A× B.

It is strongly regular with parameters (50, 7, 0, 1), in other

words, a Moore graph.
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Partition?

The number of edges of the Hoffman–Singleton graph is
one-seventh of the number of edges of K50. Can K50 be
partitioned into seven Hoffman–Singleton graphs?

None is known. But Martin Mačaj reports that there are at least
1600 ways of packing six copies of Hoffman–Singleton so that
the edge sets are disjoint. In no case do the remaining edges
form a Hoffman–Singleton graph.
The authors assumed the set of graphs invariant under a
non-trivial group. So if the partition exists, it has no non-trivial
automorphisms.
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Orthogonal Latin squares

Now we start on the road to building the last three graphs.

First, the strongly regular Latin square graphs can be
generalised. Two Latin squares L1 and L2 of the same order are
orthogonal if given a pair (a, b) of letters, there is a unique cell
(i, j) such that the (i, j) entry of L1 is a while that of L2 is b. Here
is an example:

a b c
b c a
c a b

p q r
r p q
q r p

→
ap bq cr
br cp aq
cq ar bp

A set of Latin squares is mutually orthogonal if any two of the
squares are orthogonal.
The size of a set of mutually orthogonal Latin squares (or

MOLS) of order n is at most n− 1.
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Pseudo Latin square graphs

Given a set of s− 2 mutually orthogonal Latin squares of order
n, make a graph whose vertices are the n2 cells, with two cells
joined if they lie in the same row or the same column or have
the same entry in one of the squares.

This graph is strongly regular, with parameters

(n2, s(n− 1), s2 − 3s + n, s(s− 1)).
Any strongly regular graph with these parameters is called a
pseudo Latin square graph.
Bruck proved that if s is not too large (roughly the fourth root
of n), then any pseudo Latin square graph actually arises from
a set of MOLS.
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Negative Latin square graphs

In his PhD thesis, Dale Mesner had the happy idea that, if we
replace n and s by their negatives in the parameter formulae,
we obtain what may again be possible parameters of strongly
regular graphs.

Thus, a negative Latin square graph is a strongly regular graph
with parameters (n2, s(n + 1), s2 + 3s− n, s(s + 1)).
The value of λ is s2 + 3s− n. Since this must be non-negative,
we require that n ≤ s(s + 3). If equality holds, we would have a
graph with no triangles.
For s = 1, this would give parameters (16, 5, 0, 2), and the
unique such graph is the Clebsch graph. For s = 2 it would
give (100, 22, 0, 6).
In his thesis, Mesner constructed a graph with these
parameters.
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Higman and Sims

On 3 September 1967, Donald Higman and Charles Sims were
at a group theory conference in Oxford. Marshall Hall had just
announced the construction of the simple group discovered by
Zvonimir Janko, as a permutation group on 100 points (actually
a subgroup of index 2 in the automorphism group of a
pseudo-Latin square graph with parameters (100, 36, 14, 12)).
At the conference dinner, Higman and Sims wondered whether
there might be another sporadic simple group which was also a
permutation group on 100 points. By the end of the evening
they had found one.



R. D. Carmichael had constructed in 1931, and Ernst Witt
proved unique in 1938, a configuration with 22 points and 77
blocks (we would call this a Steiner system S(3, 6, 22)) whose
automorphism group contained the Mathieu group M22 as a
subgroup of index 2. Higman and Sims built a graph from
Witt’s design. The vertex set consisted of the points and the
blocks and one additional point ∗; the edges were given by
three simple rules:
I ∗ is joined to all points;
I a point and block are joined if they are incident;
I two blocks are joined if they are disjoint (no point is

incident to both).

Using properties of the Steiner system, they showed that it is

strongly regular with parameters (100, 22, 0, 6).
Now they had to show that the graph looks the same from any
point; this follows from standard properties and uniqueness of
the design. It follows that its automorphism group is transitive,
and contains a (new) simple group as a subgroup of index 2.
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The Higman–Sims graph is isomorphic to the graph
constructed by Mesner; indeed there is a unique strongly
regular graph with these parameters.

The reasons that Higman and Sims were able to find this graph
in an evening where Mesner had struggled over it were
twofold: they understood groups; and they knew about the
Carmichael–Witt Steiner system. Mesner had to do everything
with bare hands.
We refer to the group as the Higman–Sims group, but it would
be reasonable to call the graph the Mesner graph.
See the paper by Misha Klin and Andrew Woldar in Acta
Universitatis Matthiae Belii, series Mathematics, 25 (2017), 5–62,
for further background and discussion:
http://actamath.savbb.sk.
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The last two graphs

Now we get the last two known triangle-free strongly regular
graphs as follows:

I The 77-graph is the induced subgraph on the set of vertices
not adjacent to a given vertex in the Mesner graph.
Equivalenly, the vertices are blocks of S(3, 6, 22), joined if
they are disjoint. It has parameters (77, 16, 0, 4).

I The Gewirtz graph is the induced subgraph on the set of
vertices not adjacent to either end of a given edge in the
Mesner graph. It has parameters (56, 10, 0, 2).

For a challenging exercise, prove that these recipes describe

strongly regular graphs with the stated parameters.
As a final note, the vertex set of the Mesner graph can be
partitioned into two subsets of size 50 so that the induced
subgraph on each subset is the Hoffman–Singleton graph.
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Quasi-symmetric 2-designs
The easiest way to verify properties of the two graphs above is
to use a theorem of Goethals and Seidel, generalising a result of
Bhagwandas and Shrikhande.

A 2-design has points and blocks, each block a k-subset of the
point set, and any two points lying in a constant number λ of
blocks.
It is quasi-symmetric if any two blocks intersect in either a or b
points, for some numbers a and b. The block graph of such a
design has blocks as vertices, two blocks joined if they intersect
in b points.

Theorem
The block graph of a quasi-symmetric 2-design is strongly regular.
For, if M is the incidence matrix of the design, then MM> is a
linear combination of I and J, while M>M is a linear
combination of I, J and the adjacency matrix of the graph; and
these two matrices have the same eigenvalues with the same
multiplicities apart from the eigenvalue 0.
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One more graph

The Carmichael–Witt design can be used to construct one more
strongly regular graph. It is not triangle-free, but as far as I
know it is the only strongly regular graph named after me . . .

Take the S(3, 6, 22) Steiner system, and construct a graph as
follows:
I The vertices are all the 2-element subsets of the point set of

the Steiner system.
I Join vertices {a, b} and {c, d} if the two sets are disjoint but

contained in a block.

It is strongly regular with parameters (231, 30, 9, 3).
And with that I will conclude; thank you for your attention.
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